Shange Musawenkosi G, Khumalo Nduduzo L, Mohomane Samson M, Motaung Tshwafo E
Department of Chemistry, KwaDlangezwa Campus, University of Zululand, Empangeni 3886, South Africa.
Department of Chemistry, School of Science, College of Science Engineering and Technology, University of South Africa, Preller Street, Muckleneuk Ridge, P.O. Box 392, City of Tshwane 0003, South Africa.
Materials (Basel). 2024 Apr 23;17(9):1937. doi: 10.3390/ma17091937.
Cellulose/silica nanocomposites, synthesised through the sol-gel technique, have garnered significant attention for their unique properties and diverse applications. The distinctive characteristics of these nanocomposites are influenced by a range of factors, including the cellulose-to-silica ratio, precursor concentration, pH, catalysts, solvent selection, temperature, processing techniques, and agitation. These variables play a pivotal role in determining the nanocomposites' structure, morphology, and mechanical properties, facilitating tailoring for specific applications. Studies by Raabe et al. and Barud et al. demonstrated well-deposited silica nanoparticles within the interstitial spaces of cellulosic fibres, achieved through TEOS precursor hydrolysis and the subsequent condensation of hydroxyl groups on the cellulose fibre surface. The introduction of TEOS established a robust affinity between the inorganic filler and the polymer matrix, emphasising the substantial impact of TEOS concentration on the size and morphology of silica nanoparticles in the final composites. The successful functionalisation of cellulose fibres with the TEOS precursor via the sol-gel method was reported, resulting in reduced water uptake and enhanced mechanical strength due to the strong chemical interaction between silica and cellulose. In research conducted by Feng et al., the silica/cellulose composite exhibited reduced weight loss compared to the pristine cellulose matrix, with the integration of silica leading to an elevated temperature of composite degradation. Additionally, Ahmad et al. investigated the effects of silica addition to cellulose acetate (CA) and polyethylene glycol membranes, noting an increase in Young's modulus, tensile strength, and elongation at break with silica incorporation. However, concentrations exceeding 4% (/) resulted in significant phase separations, leading to a decline in mechanical properties.
通过溶胶 - 凝胶技术合成的纤维素/二氧化硅纳米复合材料因其独特性能和多样应用而备受关注。这些纳米复合材料的独特特性受一系列因素影响,包括纤维素与二氧化硅的比例、前驱体浓度、pH值、催化剂、溶剂选择、温度、加工技术和搅拌。这些变量在决定纳米复合材料的结构、形态和机械性能方面起着关键作用,便于针对特定应用进行定制。拉贝等人和巴鲁德等人的研究表明,通过正硅酸乙酯(TEOS)前驱体水解以及随后纤维素纤维表面羟基的缩合,二氧化硅纳米颗粒在纤维素纤维的间隙空间内沉积良好。TEOS的引入在无机填料和聚合物基体之间建立了牢固的亲和力,强调了TEOS浓度对最终复合材料中二氧化硅纳米颗粒尺寸和形态的重大影响。报道了通过溶胶 - 凝胶法用TEOS前驱体对纤维素纤维进行成功功能化,由于二氧化硅与纤维素之间的强化学相互作用,导致吸水率降低和机械强度提高。在冯等人进行的研究中,与原始纤维素基体相比,二氧化硅/纤维素复合材料的失重减少,二氧化硅的加入导致复合材料降解温度升高。此外,艾哈迈德等人研究了向醋酸纤维素(CA)和聚乙二醇膜中添加二氧化硅的影响,指出随着二氧化硅的加入,杨氏模量、拉伸强度和断裂伸长率增加。然而,浓度超过4%(/)会导致明显的相分离,从而导致机械性能下降。