Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain.
Interfaculty Institute of Microbiology and Infection Biology, University Tübingen, 72076 Tübingen, Germany.
Int J Mol Sci. 2024 Apr 25;25(9):4702. doi: 10.3390/ijms25094702.
The conserved cyanobacterial protein PipX is part of a complex interaction network with regulators involved in essential processes that include metabolic homeostasis and ribosome assembly. Because PipX interactions depend on the relative levels of their different partners and of the effector molecules binding to them, in vivo studies are required to understand the physiological significance and contribution of environmental factors to the regulation of PipX complexes. Here, we have used the NanoBiT complementation system to analyse the regulation of complex formation in PCC 7942 between PipX and each of its two best-characterized partners, PII and NtcA. Our results confirm previous in vitro analyses on the regulation of PipX-PII and PipX-NtcA complexes by 2-oxoglutarate and on the regulation of PipX-PII by the ATP/ADP ratio, showing the disruption of PipX-NtcA complexes due to increased levels of ADP-bound PII in . The demonstration of a positive role of PII on PipX-NtcA complexes during their initial response to nitrogen starvation or the impact of a PipX point mutation on the activity of PipX-PII and PipX-NtcA reporters are further indications of the sensitivity of the system. This study reveals additional regulatory complexities in the PipX interaction network, opening a path for future research on cyanobacteria.
保守的蓝细菌蛋白 PipX 是与参与包括代谢稳态和核糖体组装在内的基本过程的调节剂的复杂相互作用网络的一部分。由于 PipX 相互作用取决于其不同伴侣的相对水平以及与它们结合的效应分子,因此需要进行体内研究来了解环境因素对 PipX 复合物调节的生理意义和贡献。在这里,我们使用 NanoBiT 互补系统来分析 PCC 7942 中 PipX 与其两个最具特征性的伴侣 PII 和 NtcA 之间形成复合物的调节。我们的结果证实了先前关于 2-氧代戊二酸对 PipX-PII 和 PipX-NtcA 复合物以及 ATP/ADP 比对 PipX-PII 调节的体外分析,表明由于 ADP 结合的 PII 水平增加而导致 PipX-NtcA 复合物的破坏。在氮饥饿或 PipX 点突变对 PipX-PII 和 PipX-NtcA 报告基因活性的影响的初始反应期间,PII 对 PipX-NtcA 复合物的积极作用的证明进一步表明了该系统的敏感性。这项研究揭示了 PipX 相互作用网络中的其他调节复杂性,为未来对蓝细菌的研究开辟了道路。