Llop Antonio, Tremiño Lorena, Cantos Raquel, Contreras Asunción
Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain.
Microorganisms. 2023 Sep 23;11(10):2379. doi: 10.3390/microorganisms11102379.
Cyanobacteria, microorganisms performing oxygenic photosynthesis, must adapt their metabolic processes to environmental challenges such as day and night changes. PipX, a unique regulatory protein from cyanobacteria, provides a mechanistic link between the signalling protein PII, a widely conserved (in bacteria and plants) transducer of carbon/nitrogen/energy richness, and the transcriptional regulator NtcA, which controls a large regulon involved in nitrogen assimilation. PipX is also involved in translational regulation through interaction with the ribosome-assembly GTPase EngA. However, increases in the PipX/PII ratio are toxic, presumably due to the abnormally increased binding of PipX to other partner(s). Here, we present mutational and structural analyses of reported PipX-PII and PipX-NtcA complexes, leading to the identification of single amino acid changes that decrease or abolish PipX toxicity. Notably, 4 out of 11 mutations decreasing toxicity did not decrease PipX levels, suggesting that the targeted residues (F12, D23, L36, and R54) provide toxicity determinants. In addition, one of those four mutations (D23A) argued against the over-activation of NtcA as the cause of PipX toxicity. Most mutations at residues contacting PII decreased PipX levels, indicating that PipX stability would depend on its ability to bind to PII, a conclusion supported by the light-induced decrease of PipX levels in PCC7942 (hereafter ).
蓝细菌是进行产氧光合作用的微生物,必须使其代谢过程适应诸如昼夜变化等环境挑战。PipX是一种来自蓝细菌的独特调节蛋白,它在信号蛋白PII(一种广泛保守的(在细菌和植物中)碳/氮/能量丰富度传感器)与转录调节因子NtcA之间提供了一种机制联系,NtcA控制着参与氮同化的一个大的调控子。PipX还通过与核糖体组装GTP酶EngA相互作用参与翻译调控。然而,PipX/PII比值的增加是有毒的,推测这是由于PipX与其他伙伴的异常结合增加所致。在这里,我们对已报道的PipX - PII和PipX - NtcA复合物进行了突变和结构分析,从而鉴定出降低或消除PipX毒性的单个氨基酸变化。值得注意的是,11个降低毒性的突变中有4个并没有降低PipX的水平,这表明靶向残基(F12、D23、L36和R54)提供了毒性决定因素。此外,这四个突变之一(D23A)反驳了NtcA过度激活是PipX毒性原因的观点。与PII接触的残基处的大多数突变降低了PipX的水平,表明PipX的稳定性将取决于其与PII结合的能力,这一结论得到了PCC7942(以下简称)中光诱导的PipX水平降低的支持。