Department of Pathology and Forensics, Dalian Medical University, Dalian 116044, China.
State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China.
Int J Mol Sci. 2024 Apr 29;25(9):4853. doi: 10.3390/ijms25094853.
Long-term spaceflight is known to induce disruptions in circadian rhythms, which are driven by a central pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, but the underlying molecular mechanisms remain unclear. Here, we developed a rat model that simulated microgravity and isolation environments through tail suspension and isolation (TSI). We found that the TSI environment imposed circadian disruptions to the core body temperature, heart rate, and locomotor-activity rhythms of rats, especially in the amplitude of these rhythms. In TSI model rats' SCNs, the core circadian gene NR1D1 showed higher protein but not mRNA levels along with decreased BMAL1 levels, which indicated that NR1D1 could be regulated through post-translational regulation. The autophagosome marker LC3 could directly bind to NR1D1 via the LC3-interacting region (LIR) motifs and induce the degradation of NR1D1 in a mitophagy-dependent manner. Defects in mitophagy led to the reversal of NR1D1 degradation, thereby suppressing the expression of BMAL1. Mitophagy deficiency and subsequent mitochondrial dysfunction were observed in the SCN of TSI models. Urolithin A (UA), a mitophagy activator, demonstrated an ability to enhance the amplitude of core body temperature, heart rate, and locomotor-activity rhythms by prompting mitophagy induction to degrade NR1D1. Cumulatively, our results demonstrate that mitophagy exerts circadian control by regulating NR1D1 degradation, revealing mitophagy as a potential target for long-term spaceflight as well as diseases with SCN circadian disruption.
长期的太空飞行会导致生物钟紊乱,而生物钟则由位于下丘脑视交叉上核(SCN)的中央起搏器驱动,但潜在的分子机制尚不清楚。在这里,我们通过尾部悬吊和隔离(TSI)开发了一种模拟微重力和隔离环境的大鼠模型。我们发现 TSI 环境对大鼠的核心体温、心率和运动活动节律造成了昼夜节律紊乱,尤其是在这些节律的振幅上。在 TSI 模型大鼠的 SCN 中,核心生物钟基因 NR1D1 表现出较高的蛋白水平,但 mRNA 水平没有变化,同时 BMAL1 水平降低,这表明 NR1D1 可以通过翻译后调节来调控。自噬体标记 LC3 可以通过 LC3 相互作用区域(LIR)基序直接与 NR1D1 结合,并以依赖于线粒体自噬的方式诱导 NR1D1 的降解。线粒体自噬缺陷导致 NR1D1 降解的逆转,从而抑制 BMAL1 的表达。在 TSI 模型的 SCN 中观察到线粒体自噬缺陷和随后的线粒体功能障碍。尿石素 A(UA)是一种线粒体自噬激活剂,通过促进线粒体自噬诱导 NR1D1 降解来增强核心体温、心率和运动活动节律的振幅。总之,我们的研究结果表明,线粒体自噬通过调节 NR1D1 的降解来发挥昼夜节律控制作用,揭示了线粒体自噬作为长期太空飞行以及 SCN 昼夜节律紊乱相关疾病的潜在靶点。