Suppr超能文献

线粒体自噬和细胞存活受心肌细胞中昼夜节律基因在缺血应激时的调节。

Mitochondrial autophagy and cell survival is regulated by the circadian gene in cardiac myocytes during ischemic stress.

机构信息

Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.

Centre for Cardiovascular Investigations, Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada.

出版信息

Autophagy. 2021 Nov;17(11):3794-3812. doi: 10.1080/15548627.2021.1938913. Epub 2021 Aug 7.

Abstract

Cardiac function is highly reliant on mitochondrial oxidative metabolism and quality control. The circadian gene is critically linked to vital physiological processes including mitochondrial fission, fusion and bioenergetics; however, little is known of how the gene regulates these vital processes in the heart. Herein, we identified a putative circadian CLOCK-mitochondrial interactome that gates an adaptive survival response during myocardial ischemia. We show by transcriptome and gene ontology mapping in CLOCK Δ19/Δ19 mouse that transcriptionally coordinates the efficient removal of damaged mitochondria during myocardial ischemia by directly controlling transcription of genes required for mitochondrial fission, fusion and macroautophagy/autophagy. Loss of gene activity impaired mitochondrial turnover resulting in the accumulation of damaged reactive oxygen species (ROS)-producing mitochondria from impaired mitophagy. This coincided with ultrastructural defects to mitochondria and impaired cardiac function. Interestingly, wild type CLOCK but not mutations of CLOCK defective for E-Box binding or interaction with its cognate partner ARNTL/BMAL-1 suppressed mitochondrial damage and cell death during acute hypoxia. Interestingly, the autophagy defect and accumulation of damaged mitochondria in CLOCK-deficient cardiac myocytes were abrogated by restoring autophagy/mitophagy. Inhibition of autophagy by ATG7 knockdown abrogated the cytoprotective effects of CLOCK. Collectively, our results demonstrate that CLOCK regulates an adaptive stress response critical for cell survival by transcriptionally coordinating mitochondrial quality control mechanisms in cardiac myocytes. Interdictions that restore CLOCK activity may prove beneficial in reducing cardiac injury in individuals with disrupted circadian CLOCK. ARNTL/BMAL1: aryl hydrocarbon receptor nuclear translocator-like; ATG14: autophagy related 14; ATG7: autophagy related 7; ATP: adenosine triphosphate; BCA: bovine serum albumin; BECN1: beclin 1, autophagy related; bHLH: basic helix- loop-helix; CLOCK: circadian locomotor output cycles kaput; CMV: cytomegalovirus; COQ5: coenzyme Q5 methyltransferase; CQ: chloroquine; CRY1: cryptochrome 1 (photolyase-like); DNM1L/DRP1: dynamin 1-like; EF: ejection fraction; EM: electron microscopy; FS: fractional shortening; GFP: green fluorescent protein; HPX: hypoxia; i.p.: intraperitoneal; I-R: ischemia-reperfusion; LAD: left anterior descending; LVIDd: left ventricular internal diameter diastolic; LVIDs: left ventricular internal diameter systolic; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MFN2: mitofusin 2; MI: myocardial infarction; mPTP: mitochondrial permeability transition pore; NDUFA4: Ndufa4, mitochondrial complex associated; NDUFA8: NADH: ubiquinone oxidoreductase subunit A8; NMX: normoxia; OCR: oxygen consumption rate; OPA1: OPA1, mitochondrial dynamin like GTPase; OXPHOS: oxidative phosphorylation; PBS: phosphate-buffered saline; PER1: period circadian clock 1; PPARGC1A/PGC-1α: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; qPCR: quantitative real-time PCR; RAB7A: RAB7, member RAS oncogene family; ROS: reactive oxygen species; RT: room temperature; shRNA: short hairpin RNA; siRNA: small interfering RNA; TFAM: transcription factor A, mitochondrial; TFEB: transcription factor EB; TMRM: tetra-methylrhodamine methyl ester perchlorate; WT: wild -type; ZT: zeitgeber time.

摘要

心脏功能高度依赖于线粒体氧化代谢和质量控制。节律基因与包括线粒体裂变、融合和生物能学在内的重要生理过程密切相关;然而,关于该基因如何调节心脏中的这些重要过程知之甚少。在此,我们鉴定了一个假定的节律性 CLOCK-线粒体相互作用组,该相互作用组在心肌缺血期间调节适应性存活反应。通过在 CLOCK Δ19/Δ19 小鼠中的转录组和基因本体映射表明,通过直接控制参与线粒体裂变、融合和巨自噬/自噬的基因的转录, 转录协调心肌缺血期间受损线粒体的有效清除。 基因活性的丧失会损害线粒体的周转,导致受损的活性氧(ROS)产生线粒体的积累,从而导致自噬受损。这与线粒体的超微结构缺陷和心脏功能受损相一致。有趣的是,野生型 CLOCK 但不是 E-Box 结合有缺陷或与其同源伴侣 ARNTL/BMAL-1 相互作用有缺陷的 CLOCK 突变体抑制急性缺氧期间的线粒体损伤和细胞死亡。有趣的是,在 CLOCK 缺陷型心肌细胞中,自噬缺陷和受损线粒体的积累被恢复自噬/线粒体自噬所消除。通过 ATG7 敲低抑制自噬会消除 CLOCK 的细胞保护作用。总的来说,我们的结果表明,CLOCK 通过转录协调心肌细胞中线粒体质量控制机制,调节对细胞存活至关重要的适应性应激反应。恢复 CLOCK 活性的干预措施可能有助于减少生物钟紊乱的个体的心脏损伤。ARNTL/BMAL1:芳烃受体核转位样;ATG14:自噬相关 14;ATG7:自噬相关 7;ATP:三磷酸腺苷;BCA:牛血清白蛋白;BECN1:自噬相关的 beclin 1;bHLH:碱性螺旋-环-螺旋;CLOCK:节律性运动输出周期缺失;CMV:巨细胞病毒;COQ5:辅酶 Q5 甲基转移酶;CQ:氯喹;CRY1:隐色素 1(光解酶样);DNM1L/DRP1:动力蛋白 1 样;EF:射血分数;EM:电子显微镜;FS:分数缩短;GFP:绿色荧光蛋白;HPX:缺氧;i.p.:腹腔内;I-R:缺血再灌注;LAD:左前降支;LVIDd:左心室舒张内径;LVIDs:左心室收缩内径;MAP1LC3/LC3:微管相关蛋白 1 轻链 3;MFN2:线粒体融合蛋白 2;MI:心肌梗死;mPTP:线粒体通透性转换孔;NDUFA4:NDUFA4,线粒体相关复合物;NDUFA8:NADH:泛醌氧化还原酶亚基 A8;NMX:常氧;OCR:耗氧量;OPA1:OPA1,线粒体动力蛋白样 GTPase;OXPHOS:氧化磷酸化;PBS:磷酸盐缓冲盐水;PER1:周期节律时钟 1;PPARGC1A/PGC-1α:过氧化物酶体增殖物激活受体,γ,共激活因子 1α;qPCR:定量实时 PCR;RAB7A:RAB7,RAS 癌基因家族成员;ROS:活性氧;RT:室温;shRNA:短发夹 RNA;siRNA:小干扰 RNA;TFAM:线粒体转录因子 A;TFEB:转录因子 EB;TMRM:四甲基罗丹明甲酯高氯酸盐;WT:野生型;ZT: zeitgeber 时间。

相似文献

7
Mitochondria ROS and mitophagy in acute kidney injury.线粒体 ROS 和急性肾损伤中的自噬。
Autophagy. 2023 Feb;19(2):401-414. doi: 10.1080/15548627.2022.2084862. Epub 2022 Jun 9.
10
Mitochondrial respiratory chain deficiency inhibits lysosomal hydrolysis.线粒体呼吸链缺陷抑制溶酶体水解。
Autophagy. 2019 Sep;15(9):1572-1591. doi: 10.1080/15548627.2019.1586256. Epub 2019 Mar 27.

引用本文的文献

本文引用的文献

6
Circadian-Regulated Cell Death in Cardiovascular Diseases.生物钟调控的心血管疾病细胞死亡。
Circulation. 2019 Feb 12;139(7):965-980. doi: 10.1161/CIRCULATIONAHA.118.036550.
10
Cardiac Clocks and Preclinical Translation.心脏生物钟与临床前转化
Heart Fail Clin. 2017 Oct;13(4):657-672. doi: 10.1016/j.hfc.2017.05.002. Epub 2017 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验