Suppr超能文献

SARS-CoV-2 刺突蛋白 B.1.1.7 和 B.1.351 变体功能状态下的构象灵活性和局部失稳:功能动力学和蛋白质稳定性的突变诱导变构调节机制。

Conformational Flexibility and Local Frustration in the Functional States of the SARS-CoV-2 Spike B.1.1.7 and B.1.351 Variants: Mutation-Induced Allosteric Modulation Mechanism of Functional Dynamics and Protein Stability.

机构信息

Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.

Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA.

出版信息

Int J Mol Sci. 2022 Jan 31;23(3):1646. doi: 10.3390/ijms23031646.

Abstract

Structural and functional studies of the SARS-CoV-2 spike proteins have recently determined distinct functional states of the B.1.1.7 and B.1.351 spike variants, providing a molecular framework for understanding the mechanisms that link the effect of mutations with the enhanced virus infectivity and transmissibility. A detailed dynamic and energetic analysis of these variants was undertaken in the present work to quantify the effects of different mutations on functional conformational changes and stability of the SARS-CoV-2 spike protein. We employed the efficient and accurate coarse-grained (CG) simulations of multiple functional states of the D614G mutant, B.1.1.7 and B.1.351 spike variants to characterize conformational dynamics of the SARS-CoV-2 spike proteins and identify dynamic signatures of the functional regions that regulate transitions between the closed and open forms. By combining molecular simulations with full atomistic reconstruction of the trajectories and the ensemble-based mutational frustration analysis, we characterized how the intrinsic flexibility of specific spike regions can control functional conformational changes required for binding with the host-cell receptor. Using the residue-based mutational scanning of protein stability, we determined protein stability hotspots and identified potential energetic drivers favoring the receptor-accessible open spike states for the B.1.1.7 and B.1.351 spike variants. The results suggested that modulation of the energetic frustration at the inter-protomer interfaces can serve as a mechanism for allosteric couplings between mutational sites and the inter-protomer hinges of functional motions. The proposed mechanism of mutation-induced energetic frustration may result in greater adaptability and the emergence of multiple conformational states in the open form. This study suggested that SARS-CoV-2 B.1.1.7 and B.1.351 variants may leverage the intrinsic plasticity of functional regions in the spike protein for mutation-induced modulation of protein dynamics and allosteric regulation to control binding with the host cell receptor.

摘要

对 SARS-CoV-2 刺突蛋白的结构和功能研究最近确定了 B.1.1.7 和 B.1.351 刺突变体的不同功能状态,为理解突变与增强的病毒感染力和传染性之间的联系机制提供了分子框架。本工作对这些变体进行了详细的动态和能量分析,以定量评估不同突变对 SARS-CoV-2 刺突蛋白功能构象变化和稳定性的影响。我们采用高效准确的粗粒化(CG)模拟方法,研究了 D614G 突变体、B.1.1.7 和 B.1.351 变体的多种功能状态,以表征 SARS-CoV-2 刺突蛋白的构象动力学,并确定调节其封闭和开放构象之间转变的功能区域的动态特征。通过将分子模拟与轨迹的全原子重建和基于系综的突变挫折分析相结合,我们研究了特定刺突区域的固有灵活性如何控制与宿主细胞受体结合所需的功能构象变化。利用基于残基的蛋白质稳定性突变扫描,我们确定了蛋白质稳定性热点,并确定了有利于 B.1.1.7 和 B.1.351 变体受体可及的开放刺突状态的潜在能量驱动因素。结果表明,在蛋白-蛋白相互作用界面上的能量挫折的调节可以作为突变位点与功能运动的蛋白-蛋白相互作用铰链之间变构偶联的机制。突变诱导的能量挫折的提出机制可能导致更大的适应性和开放构象中多个构象状态的出现。本研究表明,SARS-CoV-2 的 B.1.1.7 和 B.1.351 变体可能利用刺突蛋白功能区域的固有可塑性,通过突变诱导的蛋白质动力学调节和变构调控来控制与宿主细胞受体的结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9021/8836237/7d1a870c04d5/ijms-23-01646-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验