Institut FEMTO-ST CNRS UMR 6174, Université de Franche-Comté, 15 B Avenue des Montboucons, F-25044 Besançon, France.
Quantum Gravity Research, Los Angeles, CA 90290, USA.
Int J Mol Sci. 2024 May 2;25(9):4971. doi: 10.3390/ijms25094971.
RNA transcripts play a crucial role as witnesses of gene expression health. Identifying disruptive short sequences in RNA transcription and regulation is essential for potentially treating diseases. Let us delve into the mathematical intricacies of these sequences. We have previously devised a mathematical approach for defining a "healthy" sequence. This sequence is characterized by having at most four distinct nucleotides (denoted as nt≤4). It serves as the generator of a group denoted as fp. The desired properties of this sequence are as follows: fp should be close to a free group of rank nt-1, it must be aperiodic, and fp should not have isolated singularities within its SL2(C) character variety (specifically within the corresponding Groebner basis). Now, let us explore the concept of singularities. There are cubic surfaces associated with the character variety of a four-punctured sphere denoted as S24. When we encounter these singularities, we find ourselves dealing with some algebraic solutions of a dynamical second-order differential (and transcendental) equation known as the Painlevé VI Equation. In certain cases, S24 degenerates, in the sense that two punctures collapse, resulting in a "wild" dynamics governed by the Painlevé equations of an index lower than VI. In our paper, we provide examples of these fascinating mathematical structures within the context of miRNAs. Specifically, we find a clear relationship between decorated character varieties of Painlevé equations and the character variety calculated from the seed of oncomirs. These findings should find many applications including cancer research and the investigation of neurodegenative diseases.
RNA 转录本在基因表达健康中起着至关重要的作用。识别 RNA 转录和调控中的破坏性短序列对于潜在的治疗疾病至关重要。让我们深入探讨这些序列的数学复杂性。我们之前设计了一种用于定义“健康”序列的数学方法。这个序列的特征是最多有四个不同的核苷酸(表示为 nt≤4)。它作为一个群 fp 的生成元。这个序列的期望性质如下:fp 应该接近于 nt-1 阶的自由群,它必须是无周期的,并且 fp 在其 SL2(C)特征品种(特别是在相应的 Groebner 基中)内不应有孤立奇点。现在,让我们探讨奇点的概念。有与特征品种相关的三次曲面,特征品种表示为 S24。当我们遇到这些奇点时,我们会发现自己在处理一个动力二阶微分(和超越)方程的一些代数解,这个方程被称为 Painlevé VI 方程。在某些情况下,S24 退化,即两个点收缩,导致由指数低于 VI 的 Painlevé 方程控制的“狂野”动力学。在我们的论文中,我们在 miRNA 的上下文中提供了这些迷人的数学结构的例子。具体来说,我们发现 Painlevé 方程的装饰特征品种与从 oncomirs 的种子计算出的特征品种之间存在明显的关系。这些发现应该会有许多应用,包括癌症研究和神经退行性疾病的研究。