Suppr超能文献

群论和代数曲面视角下的 DNA 序列和结构。

DNA Sequence and Structure under the Prism of Group Theory and Algebraic Surfaces.

机构信息

Institut FEMTO-ST CNRS UMR 6174, Université de Bourgogne-Franche-Comté, F-25044 Besançon, France.

Quantum Gravity Research, Los Angeles, CA 90290, USA.

出版信息

Int J Mol Sci. 2022 Oct 31;23(21):13290. doi: 10.3390/ijms232113290.

Abstract

Taking a DNA sequence, a word with letters/bases A, T, G and C, as the relation between the generators of an infinite group π, one can discriminate between two important families: (i) the cardinality structure for conjugacy classes of subgroups of π is that of a free group on one to four bases, and the DNA word, viewed as a substitution sequence, is aperiodic; (ii) the cardinality structure for conjugacy classes of subgroups of π is not that of a free group, the sequence is generally not aperiodic and topological properties of π have to be determined differently. The two cases rely on DNA conformations such as A-DNA, B-DNA, Z-DNA, G-quadruplexes, etc. We found a few salient results: Z-DNA, when involved in transcription, replication and regulation in a healthy situation, implies (i). The sequence of telomeric repeats comprising three distinct bases most of the time satisfies (i). For two-base sequences in the free case (i) or non-free case (ii), the topology of π may be found in terms of the SL(2,C) character variety of π and the attached algebraic surfaces. The linking of two unknotted curves-the Hopf link-may occur in the topology of π in cases of biological importance, in telomeres, G-quadruplexes, hairpins and junctions, a feature that we already found in the context of models of topological quantum computing. For three- and four-base sequences, other knotting configurations are noticed and a building block of the topology is the four-punctured sphere. Our methods have the potential to discriminate between potential diseases associated to the sequences.

摘要

取一个 DNA 序列,一个由字母/碱基 A、T、G 和 C 组成的单词,作为无限群 π 的生成元之间的关系,可以区分两个重要的家族:(i)子群共轭类的基数结构是在一个到四个碱基上的自由群,并且 DNA 字,作为替代序列,是无周期的;(ii)子群共轭类的基数结构不是自由群,序列通常不是无周期的,并且 π 的拓扑性质必须以不同的方式确定。这两种情况依赖于 DNA 构象,如 A-DNA、B-DNA、Z-DNA、G-四联体等。我们发现了一些显著的结果:Z-DNA,当在健康情况下涉及转录、复制和调节时,意味着(i)。包含三个不同碱基的端粒重复序列序列大多数时候满足(i)。对于自由情况(i)或非自由情况(ii)的两个碱基序列,π 的拓扑结构可以根据 π 的 SL(2,C)特征 variety 和附加的代数曲面来确定。在具有生物学重要性的情况下,在端粒、G-四联体、发夹和连接中,可能会发生两个未打结的曲线——Hopf 链接的连接,这是我们在拓扑量子计算模型的背景下已经发现的特征。对于三碱基和四碱基序列,注意到其他的打结配置,拓扑的构建块是四孔球面。我们的方法有可能区分与序列相关的潜在疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d454/9654663/11b845811b94/ijms-23-13290-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验