Suppr超能文献

将基于患者的实时质量控制(PBRTQC)整合到一个新领域:低密度脂蛋白胆固醇(LDL-C)生化检测仪器之间的相互比较。

Integrating Patient-Based Real-Time Quality Control (PBRTQC) in a New Field: Inter-Comparison between Biochemical Instrumentations with LDL-C.

作者信息

Wang Jingyuan, Zhao Chedong, Fan Linlin, Wang Xiaoqin

机构信息

The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.

出版信息

Diagnostics (Basel). 2024 Apr 23;14(9):872. doi: 10.3390/diagnostics14090872.

Abstract

BACKGROUND

Patient-based real-time quality control (PBRTQC) can be a valuable tool in clinical laboratories due to its cost-effectiveness and constant monitoring. More focus is placed on discovering and improving algorithms that compliment conventional internal control techniques. The practical implementation of PBRTQC with a biochemical instrument comparison is lacking. We aim to evaluate PBRTQC's efficacy and practicality by comparing low-density lipoprotein cholesterol (LDL-C) test results to ensure consistent real-time monitoring across biochemical instrumentations in clinical laboratories.

METHOD

From 1 September 2021 to 30 August 2022, the First Affiliated Hospital of Xi'an Jiaotong University collected data from 158,259 both healthy and diseased patients, including 84,187 male and 74,072 female patients, and examined their LDL-C results. This dataset encompassed a group comprising 50,556 individuals undergoing health examinations, a group comprising 42,472 inpatients (IP), and a group comprising 75,490 outpatients (OP) for the PBRTQC intelligent monitoring platform to conduct daily tests, parameter configuration, program development, real-time execution, and performance validation of the patients' data. Moreover 40 patients' LDL-C levels were assessed using two biochemical analyzers, designated as the reference and comparator instruments. A total of 160 LDL-C results were obtained from 40 both healthy and diseased patients, including 14 OP, 16 IP, and 10 health examination attendees, who were selected to represent LDL-C levels broadly. Two biochemical instruments measured LDL-C measurements from the same individuals to investigate consistency and reproducibility across patient statuses and settings. We employed exponentially weighted moving average (EWMA) and moving median (MM) methods to calculate inter-instrument bias and ensure analytical accuracy. Inter-instrument bias for LDL-C measurements was determined by analyzing fresh serum samples, different concentrations of quality control (QC), and commercialized calibrators, employing both EWMA and MM within two assay systems. The assessment of inter-instrumental bias with five different methods adhered to the external quality assessment standards of the Clinical Laboratory Center of the Health Planning Commission, which mandates a bias within ±15.0%.

RESULT

We calculated inter-instrument comparison bias with each of the five methods based on patient big data. The comparison of fresh serum samples, different concentrations of QC, commercialized calibrators, and EWMA were all in the permissive range, except for MM. MM showed that the bias between two biochemical instruments in the concentration ranges of 1.5 mmoL/L-6.2 mmoL/L exceeded the permissible range. This was mainly due to the small number of specimens, affected by variations among individual patients, leading to increased false alarms and reduced effectiveness in monitoring the consistency of the inter-instrumental results. Moreover, the inter-comparison bias derived from EWMA was less than 3.01%, meeting the 15% range assessment criteria. The bias result for MM was lower than 24.66%, which was much higher than EWMA. Thus, EWMA is better than MM for monitoring inter-instrument comparability. PBRTQC can complement the use of inter-comparison bias between biochemical analyzers. EWMA has comparable inter-instrument comparability monitoring efficacy.

CONCLUSIONS

The utilization of AI-based PBRTQC enables the automated real-time comparison of test results across different biochemical instruments, leading to a reduction in laboratory operating costs, enhanced work efficiency, and improved QC. This advanced technology facilitates seamless data integration and analysis, ultimately contributing to a more streamlined and efficient laboratory workflow in the biomedical field.

摘要

背景

基于患者的实时质量控制(PBRTQC)因其成本效益和持续监测,可成为临床实验室的一项重要工具。目前更多关注的是发现和改进补充传统内部控制技术的算法。PBRTQC在生化仪器比较方面的实际应用尚缺。我们旨在通过比较低密度脂蛋白胆固醇(LDL-C)检测结果来评估PBRTQC的有效性和实用性,以确保临床实验室生化仪器间的实时监测一致性。

方法

2021年9月1日至2022年8月30日,西安交通大学第一附属医院收集了158259名健康和患病患者的数据,包括84187名男性和74072名女性患者,并检测了他们的LDL-C结果。该数据集包括一组50556名进行健康体检的个体、一组42472名住院患者(IP)以及一组75490名门诊患者(OP),用于PBRTQC智能监测平台对患者数据进行每日检测、参数配置、程序开发、实时执行和性能验证。此外,使用两台生化分析仪评估了40名患者的LDL-C水平,分别指定为参考仪器和比较仪器。从40名健康和患病患者中总共获得了160个LDL-C结果,包括14名门诊患者、16名住院患者和10名健康体检参与者,这些患者被广泛挑选以代表LDL-C水平。两台生化仪器对同一患者进行LDL-C检测,以研究不同患者状态和环境下的一致性和重复性。我们采用指数加权移动平均(EWMA)和移动中位数(MM)方法计算仪器间偏差并确保分析准确性。通过在两个检测系统中使用EWMA和MM分析新鲜血清样本、不同浓度的质量控制(QC)样本和商业化校准品,确定LDL-C检测的仪器间偏差。采用五种不同方法评估仪器间偏差符合卫生计生委临床检验中心的外部质量评估标准,该标准规定偏差在±15.0%以内。

结果

我们基于患者大数据用五种方法中的每一种计算了仪器间比较偏差。新鲜血清样本、不同浓度的QC样本、商业化校准品以及EWMA的比较均在允许范围内,除了MM。MM显示在1.5 mmol/L - 6.2 mmol/L浓度范围内两台生化仪器之间的偏差超过了允许范围。这主要是由于样本数量少,受个体患者差异影响导致误报增加,降低了监测仪器间结果一致性的有效性。此外,EWMA得出的仪器间比较偏差小于3.01%,符合15%范围评估标准。MM的偏差结果低于24.66%,远高于EWMA。因此,在监测仪器间可比性方面EWMA优于MM。PBRTQC可以补充生化分析仪间比较偏差的应用。EWMA具有可比的仪器间可比性监测效果。

结论

基于人工智能的PBRTQC的应用能够实现不同生化仪器检测结果的自动实时比较,降低实验室运营成本,提高工作效率并改善质量控制。这项先进技术有助于无缝数据整合与分析,最终为生物医学领域带来更简化高效的实验室工作流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e7e/11083131/11c064672416/diagnostics-14-00872-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验