Hydrology, Agriculture and Land Observation Group, Water Desalination and Reuse Center, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
Hydrosat S.à r.l., 9 Rue du Laboratoire, 1911, Luxembourg, Luxembourg.
Sci Rep. 2022 Mar 28;12(1):5244. doi: 10.1038/s41598-022-09376-6.
Satellite remote sensing has great potential to deliver on the promise of a data-driven agricultural revolution, with emerging space-based platforms providing spatiotemporal insights into precision-level attributes such as crop water use, vegetation health and condition and crop response to management practices. Using a harmonized collection of high-resolution Planet CubeSat, Sentinel-2, Landsat-8 and additional coarser resolution imagery from MODIS and VIIRS, we exploit a multi-satellite data fusion and machine learning approach to deliver a radiometrically calibrated and gap-filled time-series of daily leaf area index (LAI) at an unprecedented spatial resolution of 3 m. The insights available from such high-resolution CubeSat-based LAI data are demonstrated through tracking the growth cycle of a maize crop and identifying observable within-field spatial and temporal variations across key phenological stages. Daily LAI retrievals peaked at the tasseling stage, demonstrating their value for fertilizer and irrigation scheduling. An evaluation of satellite-based retrievals against field-measured LAI data collected from both rain-fed and irrigated fields shows high correlation and captures the spatiotemporal development of intra- and inter-field variations. Novel agricultural insights related to individual vegetative and reproductive growth stages were obtained, showcasing the capacity for new high-resolution CubeSat platforms to deliver actionable intelligence for precision agricultural and related applications.
卫星遥感在实现数据驱动农业革命方面具有巨大潜力,新兴的天基平台提供了对作物水分利用、植被健康和状况以及作物对管理措施响应等精准水平属性的时空洞察。我们利用经过协调的高分辨率 Planet CubeSat、Sentinel-2、Landsat-8 以及来自 MODIS 和 VIIRS 的其他较粗分辨率图像的集合,利用多卫星数据融合和机器学习方法,提供了前所未有的 3 米空间分辨率的辐射校准和填补间隙的每日叶面积指数 (LAI) 时间序列。通过跟踪玉米作物的生长周期并识别关键物候阶段的田间空间和时间变化,展示了基于这种高分辨率 CubeSat 的 LAI 数据的可获得的见解。每日 LAI 检索在抽雄期达到峰值,表明它们在肥料和灌溉计划方面的价值。对来自雨养和灌溉农田的实地测量 LAI 数据进行的卫星检索评估表明,它们具有很高的相关性,并捕捉到了田间和场内变化的时空发展。获得了与个体营养和生殖生长阶段相关的新农业见解,展示了新的高分辨率 CubeSat 平台为精准农业和相关应用提供可操作情报的能力。