Suppr超能文献

基于机器学习的健康成年人生物力学姿势分析:适用性和可靠性。

Biomechanical Posture Analysis in Healthy Adults with Machine Learning: Applicability and Reliability.

机构信息

Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n°97, 95123 Catania, Italy.

Department of Electrical Electronic and Computer Engineering, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.

出版信息

Sensors (Basel). 2024 May 4;24(9):2929. doi: 10.3390/s24092929.

Abstract

Posture analysis is important in musculoskeletal disorder prevention but relies on subjective assessment. This study investigates the applicability and reliability of a machine learning (ML) pose estimation model for the human posture assessment, while also exploring the underlying structure of the data through principal component and cluster analyses. A cohort of 200 healthy individuals with a mean age of 24.4 ± 4.2 years was photographed from the frontal, dorsal, and lateral views. We used Student's -test and Cohen's effect size (d) to identify gender-specific postural differences and used the Intraclass Correlation Coefficient (ICC) to assess the reliability of this method. Our findings demonstrate distinct sex differences in shoulder adduction angle (men: 16.1° ± 1.9°, women: 14.1° ± 1.5°, d = 1.14) and hip adduction angle (men: 9.9° ± 2.2°, women: 6.7° ± 1.5°, d = 1.67), with no significant differences in horizontal inclinations. ICC analysis, with the highest value of 0.95, confirms the reliability of the approach. Principal component and clustering analyses revealed potential new patterns in postural analysis such as significant differences in shoulder-hip distance, highlighting the potential of unsupervised ML for objective posture analysis, offering a promising non-invasive method for rapid, reliable screening in physical therapy, ergonomics, and sports.

摘要

姿势分析在肌肉骨骼疾病预防中很重要,但依赖于主观评估。本研究通过主成分和聚类分析,探讨了机器学习(ML)姿势估计模型在人体姿势评估中的适用性和可靠性,同时还探索了数据的潜在结构。研究纳入了 200 名年龄为 24.4±4.2 岁的健康个体,分别从前、后和侧位拍摄。我们使用学生 t 检验和 Cohen 的效应量(d)来确定性别特异性姿势差异,并使用组内相关系数(ICC)来评估该方法的可靠性。研究结果表明,男性的肩部内收角(16.1°±1.9°)和女性的肩部内收角(14.1°±1.5°)存在显著差异(d=1.14),男性的髋部内收角(9.9°±2.2°)和女性的髋部内收角(6.7°±1.5°)也存在显著差异(d=1.67),但水平倾斜度没有显著差异。ICC 分析得出的最高值为 0.95,证实了该方法的可靠性。主成分和聚类分析揭示了姿势分析中的潜在新模式,如肩部和臀部之间的距离存在显著差异,这表明无监督 ML 在客观姿势分析中的应用潜力,为物理治疗、人体工程学和运动等领域提供了一种有前途的非侵入性快速可靠的筛查方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b97/11086111/cf9b356c160b/sensors-24-02929-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验