Suppr超能文献

通过利用结合了 CNN-BiLSTM 架构的 CycleGAN 提高胎儿心电图信号提取准确性。

Enhancing Fetal Electrocardiogram Signal Extraction Accuracy through a CycleGAN Utilizing Combined CNN-BiLSTM Architecture.

机构信息

Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.

出版信息

Sensors (Basel). 2024 May 6;24(9):2948. doi: 10.3390/s24092948.

Abstract

The fetal electrocardiogram (FECG) records changes in the graph of fetal cardiac action potential during conduction, reflecting the developmental status of the fetus in utero and its physiological cardiac activity. Morphological alterations in the FECG can indicate intrauterine hypoxia, fetal distress, and neonatal asphyxia early on, enhancing maternal and fetal safety through prompt clinical intervention, thereby reducing neonatal morbidity and mortality. To reconstruct FECG signals with clear morphological information, this paper proposes a novel deep learning model, CBLS-CycleGAN. The model's generator combines spatial features extracted by the CNN with temporal features extracted by the BiLSTM network, thus ensuring that the reconstructed signals possess combined features with spatial and temporal dependencies. The model's discriminator utilizes PatchGAN, employing small segments of the signal as discriminative inputs to concentrate the training process on capturing signal details. Evaluating the model using two real FECG signal databases, namely "Abdominal and Direct Fetal ECG Database" and "Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeat Annotations", resulted in a mean MSE and MAE of 0.019 and 0.006, respectively. It detects the FQRS compound wave with a sensitivity, positive predictive value, and of 99.51%, 99.57%, and 99.54%, respectively. This paper's model effectively preserves the morphological information of FECG signals, capturing not only the FQRS compound wave but also the fetal P-wave, T-wave, P-R interval, and ST segment information, providing clinicians with crucial diagnostic insights and a scientific foundation for developing rational treatment protocols.

摘要

胎儿心电图(FECG)记录了胎儿心脏动作电位在传导过程中的图形变化,反映了胎儿在子宫内的发育状况及其生理心脏活动。FECG 的形态改变可以早期提示宫内缺氧、胎儿窘迫和新生儿窒息,通过及时的临床干预增强母婴安全,从而降低新生儿发病率和死亡率。为了重建具有清晰形态信息的 FECG 信号,本文提出了一种新颖的深度学习模型 CBLS-CycleGAN。该模型的生成器结合了卷积神经网络提取的空间特征和双向长短时记忆网络提取的时间特征,从而确保重建信号具有时空依赖性的组合特征。该模型的鉴别器利用 PatchGAN,采用信号的小片段作为鉴别输入,将训练过程集中在捕捉信号细节上。使用两个真实的 FECG 信号数据库“腹部和直接胎儿心电图数据库”和“胎儿心电图,直接和腹部与参考心跳注释”对模型进行评估,得到的平均均方误差和平均绝对误差分别为 0.019 和 0.006。它以 99.51%、99.57%和 99.54%的灵敏度、阳性预测值和特异性检测到 FQRS 复合波。本文的模型有效地保留了 FECG 信号的形态信息,不仅捕捉到了 FQRS 复合波,还捕捉到了胎儿 P 波、T 波、P-R 间期和 ST 段信息,为临床医生提供了重要的诊断见解,为制定合理的治疗方案提供了科学依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1685/11086239/4f02cdeaf1d5/sensors-24-02948-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验