Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic.
PLoS One. 2022 Apr 11;17(4):e0266807. doi: 10.1371/journal.pone.0266807. eCollection 2022.
This paper is focused on the design, implementation and verification of a novel method for the optimization of the control parameters of different hybrid systems used for non-invasive fetal electrocardiogram (fECG) extraction. The tested hybrid systems consist of two different blocks, first for maternal component estimation and second, so-called adaptive block, for maternal component suppression by means of an adaptive algorithm (AA). Herein, we tested and optimized four different AAs: Adaptive Linear Neuron (ADALINE), Standard Least Mean Squares (LMS), Sign-Error LMS, Standard Recursive Least Squares (RLS), and Fast Transversal Filter (FTF). The main criterion for optimal parameter selection was the F1 parameter. We conducted experiments using real signals from publicly available databases and those acquired by our own measurements. Our optimization method enabled us to find the corresponding optimal settings for individual adaptive block of all tested hybrid systems which improves achieved results. These improvements in turn could lead to a more accurate fetal heart rate monitoring and detection of fetal hypoxia. Consequently, our approach could offer the potential to be used in clinical practice to find optimal adaptive filter settings for extracting high quality fetal ECG signals for further processing and analysis, opening new diagnostic possibilities of non-invasive fetal electrocardiography.
本文专注于设计、实现和验证一种新颖的方法,用于优化用于非侵入性胎儿心电图 (fECG) 提取的不同混合系统的控制参数。测试的混合系统由两个不同的模块组成,第一个是用于母体分量估计,第二个是所谓的自适应模块,通过自适应算法 (AA) 进行母体分量抑制。在此,我们测试和优化了四种不同的 AA:自适应线性神经元 (ADALINE)、标准最小均方 (LMS)、符号误差 LMS、标准递归最小二乘 (RLS) 和快速横向滤波器 (FTF)。最佳参数选择的主要标准是 F1 参数。我们使用来自公开可用数据库和我们自己测量获得的真实信号进行了实验。我们的优化方法使我们能够为所有测试的混合系统的各个自适应模块找到相应的最佳设置,从而提高了所获得的结果。这些改进反过来又可以实现更准确的胎儿心率监测和胎儿缺氧检测。因此,我们的方法有可能在临床实践中用于为提取高质量胎儿 ECG 信号找到最佳自适应滤波器设置,以便进一步处理和分析,为非侵入性胎儿心电图开辟新的诊断可能性。