Suppr超能文献

将先进技术和机器学习集成用于垃圾渗滤液处理:解决限制和环境问题。

Integrating advanced techniques and machine learning for landfill leachate treatment: Addressing limitations and environmental concerns.

机构信息

Centre for Energy and Environmental Sustainability, Lucknow, India; School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea.

Centre for Energy and Environmental Sustainability, Lucknow, India.

出版信息

Environ Pollut. 2024 Aug 1;354:124134. doi: 10.1016/j.envpol.2024.124134. Epub 2024 May 9.

Abstract

This review article explores the challenges associated with landfill leachate resulting from the increasing disposal of municipal solid waste in landfills and open areas. The composition of landfill leachate includes antibiotics (0.001-100 μg), heavy metals (0.001-1.4 g/L), dissolved organic and inorganic components, and xenobiotics including polyaromatic hydrocarbons (10-25 μg/L). Conventional treatment methods, such as biological (microbial and phytoremediation) and physicochemical (electrochemical and membrane-based) techniques, are available but face limitations in terms of cost, accuracy, and environmental risks. To surmount these challenges, this study advocates for the integration of artificial intelligence (AI) and machine learning (ML) to strengthen treatment efficacy through predictive analytics and optimized operational parameters. It critically evaluates the risks posed by recalcitrant leachate components and appraises the performance of various treatment modalities, both independently and in tandem with biological and physicochemical processes. Notably, physicochemical treatments have demonstrated pollutant removal rates of up to 90% for various contaminants, while integrated biological approaches have achieved over 95% removal efficiency. However, the heterogeneous nature of solid waste composition further complicates treatment methodologies. Consequently, the integration of advanced ML algorithms such as Support Vector Regression, Artificial Neural Networks, and Genetic Algorithms is proposed to refine leachate treatment processes. This review provides valuable insights for different stakeholders specifically researchers, policymakers and practitioners, seeking to fortify waste disposal infrastructure and foster sustainable landfill leachate management practices. By leveraging AI and ML tools in conjunction with a nuanced understanding of leachate complexities, a promising pathway emerges towards effectively addressing this environmental challenge while mitigating potential adverse impacts.

摘要

这篇综述文章探讨了由于城市固体废物在垃圾填埋场和开放区域的不断增加而导致的垃圾渗滤液所带来的挑战。垃圾渗滤液的组成包括抗生素(0.001-100μg)、重金属(0.001-1.4g/L)、溶解的有机和无机成分以及包括多环芳烃(10-25μg/L)在内的异生物。现有的常规处理方法,如生物(微生物和植物修复)和物理化学(电化学和基于膜的)技术,但在成本、准确性和环境风险方面存在局限性。为了克服这些挑战,本研究提倡将人工智能(AI)和机器学习(ML)集成到预测分析和优化操作参数中,以增强处理效果。它批判性地评估了难处理的渗滤液成分所带来的风险,并评估了各种处理方式的性能,包括独立使用和与生物和物理化学过程结合使用的方式。值得注意的是,物理化学处理方法已证明对各种污染物的去除率高达 90%,而综合生物方法的去除效率超过 95%。然而,固体废物成分的异质性进一步使处理方法复杂化。因此,建议集成高级 ML 算法,如支持向量回归、人工神经网络和遗传算法,以优化渗滤液处理过程。本综述为不同利益相关者提供了有价值的见解,特别是研究人员、政策制定者和从业者,他们希望加强废物处理基础设施并促进可持续的垃圾渗滤液管理实践。通过在结合对渗滤液复杂性的细致理解的基础上利用 AI 和 ML 工具,可以为有效应对这一环境挑战并减轻潜在的不利影响提供一个有前途的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验