Wu Fanming, Li Dengao, Zhao Jumin, Jiang Hairong, Luo Xinyu
College of Computer Science and Technology, College of Data Science, Taiyuan University of Technology, Taiyuan 030024, China.
College of Computer Science and Technology, College of Data Science, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Big Data Fusion Analysis and Application of Shanxi Province, Taiyuan 030024, China.
Sci Total Environ. 2024 Jul 10;933:173116. doi: 10.1016/j.scitotenv.2024.173116. Epub 2024 May 9.
Water vapor is an important meteorological parameter. Accurate prediction of water vapor content can be used to provide important reference information for heavy rainfall forecast and artificial precipitation operation. The current water vapor hybrid prediction model has the problem of future data leakage, and the error is accumulated by reconstructing the subsequence after prediction. Therefore, this paper proposes a stepwise decomposition-integration-prediction precipitable water vapor mechanism, named SDIPPWV, which can effectively solve the above problems. Firstly, High-precision precipitable water vapor (PWV) sequence is retrieved from Global Navigation Satellite System (GNSS) observation files. Then stepwise decomposition process uses a fixed-size window to segment the PWV sequence and Seasonal-Trend decomposition based on Loess (STL) to decompose the sequences within the window. Next, the features of the three sub-sequences are integrated to construct the feature space. Finally the prediction of PWV is obtained using 1D Convolutional Neural Network-Bidirectional Long Short Term Memory (1D CNN-BiLSTM). The model performance is verified using observation data from eight GNSS stations. The performance of the PWV prediction model proposed in this paper is effectively improved compared with the single prediction models and other hybrid models. The mean root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and coefficient of determination (R) of the eight stations are 0.2146 mm, 0.1132 mm, 1.29 %, and 0.9998, respectively. The results show that the model proposed in this paper improves the prediction accuracy of water vapor content while solving the data leakage problem.
水汽是一个重要的气象参数。准确预测水汽含量可为暴雨预报和人工增雨作业提供重要参考信息。当前的水汽混合预测模型存在未来数据泄露问题,且在预测后通过重构子序列会累积误差。因此,本文提出了一种逐步分解 - 整合 - 预测可降水量水汽机制,名为SDIPPWV,它能有效解决上述问题。首先,从全球导航卫星系统(GNSS)观测文件中检索高精度可降水量水汽(PWV)序列。然后,逐步分解过程使用固定大小的窗口对PWV序列进行分段,并基于黄土的季节性趋势分解(STL)对窗口内的序列进行分解。接下来,将三个子序列的特征进行整合以构建特征空间。最后,使用一维卷积神经网络 - 双向长短期记忆(1D CNN - BiLSTM)获得PWV的预测结果。利用八个GNSS站的观测数据对模型性能进行了验证。与单一预测模型和其他混合模型相比,本文提出的PWV预测模型的性能得到了有效提升。八个站点的平均均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和决定系数(R)分别为0.2146毫米、0.1132毫米、1.29%和0.9998。结果表明,本文提出的模型在解决数据泄露问题的同时提高了水汽含量的预测精度。