Suppr超能文献

解决早产研究中的偏倚问题:在围产健康数据中缺失种族和民族信息的高级插补技术的作用。

Addressing bias in preterm birth research: The role of advanced imputation techniques for missing race and ethnicity in perinatal health data.

机构信息

Columbia University School of Nursing, New York, NY, United States.

Columbia University School of Nursing, New York, NY, United States.

出版信息

Ann Epidemiol. 2024 Jun;94:120-126. doi: 10.1016/j.annepidem.2024.05.003. Epub 2024 May 10.

Abstract

OBJECTIVES

To evaluate the effectiveness of Bayesian Improved Surname Geocoding (BISG) and Bayesian Improved First Name Surname Geocoding (BIFSG) in estimating race and ethnicity, and how they influence odds ratios for preterm birth.

METHODS

We analyzed hospital birth admission electronic health records (EHR) data (N = 9985). We created two simulation sets with 40 % of race and ethnicity data missing randomly or more likely for non-Hispanic black birthing people who had preterm birth. We calculated C-statistics to evaluate how accurately BISG and BIFSG estimate race and ethnicity. We examined the association between race and ethnicity and preterm birth using logistic regression and reported odds ratios (OR).

RESULTS

BISG and BIFSG showed high accuracy for most racial and ethnic categories (C-statistics = 0.94-0.97, 95 % confidence intervals [CI] = 0.92-0.97). When race and ethnicity were not missing at random, BISG (OR = 1.25, CI = 0.97-1.62) and BIFSG (OR = 1.38, CI = 1.08-1.76) resulted in positive estimates mirroring the true association (OR = 1.68, CI = 1.34-2.09) for Non-Hispanic Black birthing people, while traditional methods showed contrasting estimates (Complete case OR = 0.62, CI = 0.41-0.94; multiple imputation OR = 0.63, CI = 0.40-0.98).

CONCLUSIONS

BISG and BIFSG accurately estimate missing race and ethnicity in perinatal EHR data, decreasing bias in preterm birth research, and are recommended over traditional methods to reduce potential bias.

摘要

目的

评估贝叶斯改进姓氏地理编码(BISG)和贝叶斯改进名姓地理编码(BIFSG)在估计种族和族裔方面的有效性,以及它们如何影响早产的优势比。

方法

我们分析了医院分娩入院电子健康记录(EHR)数据(N=9985)。我们创建了两个模拟集,其中 40%的种族和族裔数据随机缺失,或更可能缺失非西班牙裔黑人分娩者的早产数据。我们计算了 C 统计量来评估 BISG 和 BIFSG 估计种族和族裔的准确性。我们使用逻辑回归检查种族和族裔与早产之间的关联,并报告优势比(OR)。

结果

BISG 和 BIFSG 对大多数种族和族裔类别显示出很高的准确性(C 统计量=0.94-0.97,95%置信区间[CI] = 0.92-0.97)。当种族和族裔不是随机缺失时,BISG(OR=1.25,CI=0.97-1.62)和 BIFSG(OR=1.38,CI=1.08-1.76)产生了与真实关联(OR=1.68,CI=1.34-2.09)相匹配的阳性估计值,而非西班牙裔黑人分娩者,而传统方法则显示出相反的估计值(完整案例 OR=0.62,CI=0.41-0.94;多重插补 OR=0.63,CI=0.40-0.98)。

结论

BISG 和 BIFSG 可准确估计围产期 EHR 数据中缺失的种族和族裔,减少早产研究中的偏差,并建议使用传统方法来减少潜在偏差。

相似文献

8
Preterm Birth Risk and Maternal Nativity, Ethnicity, and Race.早产风险与产妇出生地、民族和种族。
JAMA Netw Open. 2024 Mar 4;7(3):e243194. doi: 10.1001/jamanetworkopen.2024.3194.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验