Suppr超能文献

外膜囊泡包裹的锰纳米反应器通过减轻缺氧和免疫刺激增强癌症金属免疫疗法。

Outer membrane vesicle-wrapped manganese nanoreactor for augmenting cancer metalloimmunotherapy through hypoxia attenuation and immune stimulation.

机构信息

Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China.

Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.

出版信息

Acta Biomater. 2024 Jun;181:402-414. doi: 10.1016/j.actbio.2024.05.010. Epub 2024 May 9.

Abstract

Tumor hypoxia, high oxidative stress, and low immunogenic create a deep-rooted immunosuppressive microenvironment, posing a major challenge to the therapeutic efficiency of cancer immunotherapy for solid tumor. Herein, an intelligent nanoplatform responsive to the tumor microenvironment (TME) capable of hypoxia relief and immune stimulation has been engineered for efficient solid tumor immunotherapy. The MnO@OxA@OMV nanoreactor, enclosing bacterial-derived outer membrane vesicles (OMVs)-wrapped MnO nanoenzyme and the immunogenic cell death inducer oxaliplatin (OxA), demonstrated intrinsic catalase-like activity within the TME, which effectively catalyzed the endogenous HO into O to enable a prolonged oxygen supply, thereby alleviating the tumor's oxidative stress and hypoxic TME, and expediting OxA release. The combinational action of OxA-caused ICD effect and Mn from nanoreactor enabled the motivation of the cGAS-STING pathway to significantly improve the activation of STING and dendritic cells (DCs) maturation, resulting in metalloimmunotherapy. Furthermore, the immunostimulant OMVs played a crucial role in promoting the infiltration of activated CD8T cells into the solid tumor. Overall, the nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy. STATEMENT OF SIGNIFICANCE: A tailor-made nanoreactor was fabricated by enclosing bacterial-derived outer membrane vesicles (OMVs) onto MnO nanoenzyme and loading with immunogenic cell death inducer oxaliplatin (OxA) for tumor metalloimmunotherapy. The nanoreactor possesses intrinsic catalase-like activity within the tumor microenvironment, which effectively enabled a prolonged oxygen supply by catalyzing the conversion of endogenous HO into O2, thereby alleviating tumor hypoxia and expediting OxA release. Furthermore, the TME-responsive release of nutritional Mn sensitized the cGAS-STING pathway and collaborated with OxA-induced immunogenic cell death (ICD). Combing with immunostimulatory OMVs enhances the uptake of nanoreactors by DCs and promotes the infiltration of activated CD8T cells. This nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy.

摘要

肿瘤缺氧、高氧化应激和低免疫原性会导致深度免疫抑制微环境,这对实体瘤的癌症免疫治疗疗效构成重大挑战。在此,设计了一种智能纳米平台,该平台可响应肿瘤微环境(TME),缓解缺氧并刺激免疫,从而实现有效的实体瘤免疫治疗。MnO@OxA@OMV 纳米反应器,包含细菌衍生的外膜囊泡(OMV)包裹的 MnO 纳米酶和免疫原性细胞死亡诱导剂奥沙利铂(OxA),在 TME 中表现出内在的过氧化氢酶样活性,可有效地将内源性 HO 转化为 O,从而实现长时间的供氧,从而缓解肿瘤的氧化应激和缺氧 TME,并加速 OxA 的释放。OxA 引起的免疫原性细胞死亡(ICD)效应和纳米反应器中的 Mn 的联合作用,可激活 cGAS-STING 途径,显著提高 STING 和树突状细胞(DC)的成熟度,从而实现金属免疫治疗。此外,免疫刺激物 OMVs 在促进激活的 CD8T 细胞浸润实体瘤中发挥关键作用。总的来说,该纳米反应器为实体瘤治疗提供了一个强大的平台,突出了缓解肿瘤缺氧和免疫刺激相结合在金属免疫治疗中的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验