Suppr超能文献

混合离子/电子界面调控稳定超高电压锂钴氧化物的钴/氧氧化还原以实现快速充电循环性能。

Hybrid ion/electron interfacial regulation stabilizes the cobalt/oxygen redox of ultrahigh-voltage lithium cobalt oxide for fast-charging cyclability.

作者信息

Bi Zhihong, Zhang Anping, Wang Gongrui, Dong Cong, Das Pratteek, Shi Xiaoyu, Wu Zhong-Shuai

机构信息

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian National Laboratory of Clean Energy, Chinese Academy of Sciences, Dalian 116023, China.

出版信息

Sci Bull (Beijing). 2024 Jul 15;69(13):2071-2079. doi: 10.1016/j.scib.2024.04.015. Epub 2024 Apr 6.

Abstract

High-voltage and fast-charging LiCoO (LCO) is key to high-energy/power-density Li-ion batteries. However, unstable surface structure and unfavorable electronic/ionic conductivity severely hinder its high-voltage fast-charging cyclability. Here, we construct a Li/Na-B-Mg-Si-O-F-rich mixed ion/electron interface network on the 4.65 V LCO electrode to enhance its rate capability and long-term cycling stability. Specifically, the resulting artificial hybrid conductive network enhances the reversible conversion of Co/O redox by the interfacial ion-electron cooperation and suppresses interface side reactions, inducing an ultrathin yet compact cathode electrolyte interphase. Simultaneously, the derived near-surface Na/Mg/Si-pillared local intercalation structure greatly promotes the Li diffusion around the 4.55 V phase transition and stabilizes the cathode interface. Finally, excellent 3 C (1 C = 274 mA g) fast charging performance is demonstrated with 73.8% capacity retention over 1000 cycles. Our findings shed new insights to the fundamental mechanism of interfacial ion/electron synergy in stabilizing and enhancing fast-charging cathode materials.

摘要

高压快充钴酸锂(LCO)是高能量/功率密度锂离子电池的关键。然而,不稳定的表面结构以及不利的电子/离子传导性严重阻碍了其高压快充循环性能。在此,我们在4.65 V的LCO电极上构建了一个富含锂/钠/硼/镁/硅/氧/氟的混合离子/电子界面网络,以提高其倍率性能和长期循环稳定性。具体而言,所形成的人工混合导电网络通过界面离子-电子协同作用增强了钴/氧氧化还原的可逆转化,并抑制了界面副反应,从而诱导出超薄且致密的阴极电解质界面。同时,衍生出的近表面钠/镁/硅柱撑局部插层结构极大地促进了4.55 V相变附近的锂扩散,并稳定了阴极界面。最终,展示出了优异的3C(1C = 274 mA g)快充性能,在1000次循环后容量保持率为73.8%。我们的研究结果为稳定和增强快充阴极材料中界面离子/电子协同作用的基本机制提供了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验