Suppr超能文献

ACP-ESM2:基于预训练分类器的抗癌肽预测。

ACP-ESM2: The prediction of anticancer peptides based on pre-trained classifier.

机构信息

School of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.

School of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.

出版信息

Comput Biol Chem. 2024 Jun;110:108091. doi: 10.1016/j.compbiolchem.2024.108091. Epub 2024 May 2.

Abstract

Anticancer peptides (ACPs) are a type of protein molecule that has anti-cancer activity and can inhibit cancer cell growth and survival. Traditional classification approaches for ACPs are expensive and time-consuming. This paper proposes a pre-trained classifier model, ESM2-GRU, for ACP prediction to make it easier to predict ACPs, gain a better understanding of the structural and functional differences of anti-cancer peptides, and optimize the design for the development of more effective anti-cancer treatment strategies. The model is made up of the ESM2 pre-trained model, a bidirectional GRU recurrent neural network, and a fully connected layer. ACP sequences are first fed into the ESM2 model, which then expands the dimensions before feeding the findings back into the bidirectional GRU recurrent neural network. Finally, the fully connected layer generates the ultimate output. Experimental validation demonstrates that the ESM2-GRU model greatly improves classification performance on the benchmark dataset ACP606, with AUC, ACC, and MCC values of 0.975, 0.852, and 0.738, respectively. This exceptional prediction potential helps to identify specific types of anti-cancer peptides, improving their targeting and selectivity and, therefore, furthering the development of tailored medicine and treatments.

摘要

抗癌肽 (ACPs) 是一种具有抗癌活性的蛋白质分子,可以抑制癌细胞的生长和存活。传统的 ACP 分类方法既昂贵又耗时。本文提出了一种基于预训练的分类器模型 ESM2-GRU 用于 ACP 预测,以更轻松地预测 ACP,更好地了解抗癌肽的结构和功能差异,并优化设计以开发更有效的抗癌治疗策略。该模型由 ESM2 预训练模型、双向 GRU 递归神经网络和全连接层组成。首先将 ACP 序列输入到 ESM2 模型中,然后在将结果反馈到双向 GRU 递归神经网络之前扩展维度。最后,全连接层生成最终输出。实验验证表明,ESM2-GRU 模型大大提高了基准数据集 ACP606 的分类性能,AUC、ACC 和 MCC 值分别为 0.975、0.852 和 0.738。这种出色的预测潜力有助于识别特定类型的抗癌肽,提高其靶向性和选择性,从而进一步推动个体化药物和治疗的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验