Hoffman David W, Rasmussen Cornelia
Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th St., Austin, TX, 78712, USA.
Institute for Geophysics, The University of Texas at Austin, J. J. Pickle Research Campus, 10601 Exploration Way, Austin, TX, 78758, USA.
Anal Bioanal Chem. 2024 Jul;416(16):3847-3856. doi: 10.1007/s00216-024-05326-5. Epub 2024 May 14.
Glyphosate [N-(phosphonomethyl) glycine] is a widely used herbicide and a molecule of interest in the environmental sciences, due to its global use in agriculture and its potential impact on ecosystems. This study presents the first position-specific carbon isotope (C/C) analyses of glyphosates from multiple sources. In contrast to traditional isotope ratio mass spectrometry (IRMS), position-specific analysis provides C/C ratios at individual carbon atom positions within a molecule, rather than an average carbon isotope ratio across a mixture or a specific compound. In this work, glyphosate in commercial herbicides was analyzed with only minimal purification, using a nuclear magnetic resonance (NMR) spectroscopy method that detects H nuclei with bonds to either C or C, and isolates the signals of interest from other signals in the mixture. Results demonstrate that glyphosate from different sources can have significantly different intramolecular C/C distributions, which were found to be spread over a wide range, with δC Vienna Peedee Belemnite (VPDB) values of -28.7 to -57.9‰. In each glyphosate, the carbon with a bond to the phosphorus atom was found to be depleted in C compared to the carbon at the C2 position, by 4 to 10‰. Aminomethylphosphonic acid (AMPA) was analyzed for method validation; AMPA contains only a single carbon position, so the C/C results provided by the NMR method could be directly compared with traditional isotope ratio mass spectrometry. The glyphosate mixtures were also analyzed by IRMS to obtain their average C/C ratios, for comparison with our position-specific results. This comparison revealed that the IRMS results significantly disguise the intramolecular isotope distribution. Finally, we introduce a P NMR method that can provide a position-specific C/C ratio for carbon positions with a C-P chemical bond, and the results obtained by H and P for C3 carbon agree with one another within their analytical uncertainty. These analytical tools for position-specific carbon isotope analysis permit the isotopic fingerprinting of target molecules within a mixture, with potential applications in a range of fields, including the environmental sciences and chemical forensics.
草甘膦[N-(膦酰基甲基)甘氨酸]是一种广泛使用的除草剂,因其在农业中的全球使用及其对生态系统的潜在影响,成为环境科学领域关注的分子。本研究首次对多种来源的草甘膦进行了特定位置的碳同位素(C/C)分析。与传统的同位素比率质谱法(IRMS)不同,特定位置分析提供的是分子内各个碳原子位置的C/C比率,而非混合物或特定化合物的平均碳同位素比率。在这项工作中,采用核磁共振(NMR)光谱法对商业除草剂中的草甘膦进行分析,该方法通过检测与C或C键合的H原子核,并从混合物中的其他信号中分离出感兴趣的信号,仅进行了极少的纯化处理。结果表明,不同来源的草甘膦分子内C/C分布可能存在显著差异,其范围很广,维也纳皮迪迪贝莱姆石(VPDB)的δC值为-28.7至-57.9‰。在每种草甘膦中,与磷原子键合的碳原子相对于C2位置的碳原子,其C含量减少了4至10‰。对氨基甲基膦酸(AMPA)进行了方法验证分析;AMPA仅包含一个碳位置,因此NMR方法提供的C/C结果可直接与传统同位素比率质谱法进行比较。还通过IRMS对草甘膦混合物进行了分析,以获得其平均C/C比率,用于与我们的特定位置结果进行比较。这种比较表明,IRMS结果显著掩盖了分子内同位素分布。最后,我们介绍了一种P NMR方法,该方法可为具有C-P化学键的碳位置提供特定位置的C/C比率,通过H和P对C3碳获得的结果在分析不确定度范围内相互一致。这些用于特定位置碳同位素分析的工具允许对混合物中的目标分子进行同位素指纹识别,在包括环境科学和化学取证在内的一系列领域具有潜在应用。