Center for Statistical Science and Department of Industrial Engineering, Tsinghua University, Beijing 100084, China.
Center for Applied Statistics and School of Statistics, Renmin University of China, Beijing 100872, China.
Biometrics. 2024 Mar 27;80(2). doi: 10.1093/biomtc/ujae036.
We propose a new non-parametric conditional independence test for a scalar response and a functional covariate over a continuum of quantile levels. We build a Cramer-von Mises type test statistic based on an empirical process indexed by random projections of the functional covariate, effectively avoiding the "curse of dimensionality" under the projected hypothesis, which is almost surely equivalent to the null hypothesis. The asymptotic null distribution of the proposed test statistic is obtained under some mild assumptions. The asymptotic global and local power properties of our test statistic are then investigated. We specifically demonstrate that the statistic is able to detect a broad class of local alternatives converging to the null at the parametric rate. Additionally, we recommend a simple multiplier bootstrap approach for estimating the critical values. The finite-sample performance of our statistic is examined through several Monte Carlo simulation experiments. Finally, an analysis of an EEG data set is used to show the utility and versatility of our proposed test statistic.
我们提出了一种新的非参数条件独立性检验方法,用于在连续分位数水平上对标量响应和函数协变量进行检验。我们基于基于函数协变量的随机投影的经验过程构建了一个 Cramer-von Mises 型检验统计量,有效地避免了在投影假设下的“维度诅咒”,该假设几乎可以肯定等同于零假设。在一些温和的假设下,得到了所提出的检验统计量的渐近零分布。然后研究了我们的检验统计量的渐近全局和局部功效性质。我们特别证明,该统计量能够以参数速率检测到广泛的局部替代收敛到零的情况。此外,我们建议了一种简单的乘子自举方法来估计临界值。通过多项蒙特卡罗模拟实验研究了我们的统计量的有限样本性能。最后,使用 EEG 数据集的分析来说明我们提出的检验统计量的实用性和多功能性。