Suppr超能文献

ST-Phys:无监督的时空对比远程生理测量。

ST-Phys: Unsupervised Spatio-Temporal Contrastive Remote Physiological Measurement.

出版信息

IEEE J Biomed Health Inform. 2024 Aug;28(8):4613-4624. doi: 10.1109/JBHI.2024.3400869. Epub 2024 Aug 6.

Abstract

Remote photoplethysmography (rPPG) is a non-contact method that employs facial videos for measuring physiological parameters. Existing rPPG methods have achieved remarkable performance. However, the success mainly profits from supervised learning over massive labeled data. On the other hand, existing unsupervised rPPG methods fail to fully utilize spatio-temporal features and encounter challenges in low-light or noise environments. To address these problems, we propose an unsupervised contrast learning approach, ST-Phys. We incorporate a low-light enhancement module, a temporal dilated module, and a spatial enhanced module to better deal with long-term dependencies under the random low-light conditions. In addition, we design a circular margin loss, wherein rPPG signals originating from identical videos are attracted, while those from distinct videos are repelled. Our method is assessed on six openly accessible datasets, including RGB and NIR videos. Extensive experiments reveal the superior performance of our proposed ST-Phys over state-of-the-art unsupervised rPPG methods. Moreover, it offers advantages in parameter reduction and noise robustness.

摘要

远程光体积描记术(rPPG)是一种非接触式方法,利用面部视频来测量生理参数。现有的 rPPG 方法已经取得了显著的性能。然而,成功主要得益于对大量标记数据的监督学习。另一方面,现有的无监督 rPPG 方法未能充分利用时空特征,并且在低光或噪声环境中遇到挑战。为了解决这些问题,我们提出了一种无监督对比学习方法 ST-Phys。我们结合了低光增强模块、时间扩张模块和空间增强模块,以更好地处理随机低光条件下的长期依赖关系。此外,我们设计了一种圆形边界损失,其中来自相同视频的 rPPG 信号被吸引,而来自不同视频的信号则被排斥。我们的方法在六个公开可用的数据集上进行了评估,包括 RGB 和 NIR 视频。广泛的实验表明,我们提出的 ST-Phys 优于最先进的无监督 rPPG 方法。此外,它在参数减少和噪声鲁棒性方面具有优势。

相似文献

1
ST-Phys: Unsupervised Spatio-Temporal Contrastive Remote Physiological Measurement.
IEEE J Biomed Health Inform. 2024 Aug;28(8):4613-4624. doi: 10.1109/JBHI.2024.3400869. Epub 2024 Aug 6.
2
ConDiff-rPPG: Robust Remote Physiological Measurement to Heterogeneous Occlusions.
IEEE J Biomed Health Inform. 2024 Dec;28(12):7090-7102. doi: 10.1109/JBHI.2024.3433461. Epub 2024 Dec 5.
3
Contrast-Phys+: Unsupervised and Weakly-Supervised Video-Based Remote Physiological Measurement via Spatiotemporal Contrast.
IEEE Trans Pattern Anal Mach Intell. 2024 Aug;46(8):5835-5851. doi: 10.1109/TPAMI.2024.3367910. Epub 2024 Jul 2.
4
New insights on super-high resolution for video-based heart rate estimation with a semi-blind source separation method.
Comput Biol Med. 2020 Jan;116:103535. doi: 10.1016/j.compbiomed.2019.103535. Epub 2019 Nov 16.
5
AND-rPPG: A novel denoising-rPPG network for improving remote heart rate estimation.
Comput Biol Med. 2022 Feb;141:105146. doi: 10.1016/j.compbiomed.2021.105146. Epub 2021 Dec 17.
6
MFF-Net: A Lightweight Multi-Frequency Network for Measuring Heart Rhythm from Facial Videos.
Sensors (Basel). 2024 Dec 12;24(24):7937. doi: 10.3390/s24247937.
7
Measurement of heart rate from long-distance videos via projection of rotated orthogonal bases in POS.
Med Eng Phys. 2025 Apr;138:104326. doi: 10.1016/j.medengphy.2025.104326. Epub 2025 Mar 13.
9
Physiological Information Preserving Video Compression for rPPG.
IEEE J Biomed Health Inform. 2025 May;29(5):3563-3575. doi: 10.1109/JBHI.2025.3526837. Epub 2025 May 6.
10
Spiking-PhysFormer: Camera-based remote photoplethysmography with parallel spike-driven transformer.
Neural Netw. 2025 May;185:107128. doi: 10.1016/j.neunet.2025.107128. Epub 2025 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验