Suppr超能文献

Spiking-PhysFormer:基于摄像头的并行脉冲驱动变压器远程光电容积脉搏波描记法

Spiking-PhysFormer: Camera-based remote photoplethysmography with parallel spike-driven transformer.

作者信息

Liu Mingxuan, Tang Jiankai, Chen Yongli, Li Haoxiang, Qi Jiahao, Li Siwei, Wang Kegang, Gan Jie, Wang Yuntao, Chen Hong

机构信息

Tsinghua University, Beijing, China.

Beijing Smartchip Microelectronics Technology Co., Ltd, Beijing, China.

出版信息

Neural Netw. 2025 May;185:107128. doi: 10.1016/j.neunet.2025.107128. Epub 2025 Jan 10.

Abstract

Artificial neural networks (ANNs) can help camera-based remote photoplethysmography (rPPG) in measuring cardiac activity and physiological signals from facial videos, such as pulse wave, heart rate and respiration rate with better accuracy. However, most existing ANN-based methods require substantial computing resources, which poses challenges for effective deployment on mobile devices. Spiking neural networks (SNNs), on the other hand, hold immense potential for energy-efficient deep learning owing to their binary and event-driven architecture. To the best of our knowledge, we are the first to introduce SNNs into the realm of rPPG, proposing a hybrid neural network (HNN) model, the Spiking-PhysFormer, aimed at reducing power consumption. Specifically, the proposed Spiking-PhyFormer consists of an ANN-based patch embedding block, SNN-based transformer blocks, and an ANN-based predictor head. First, to simplify the transformer block while preserving its capacity to aggregate local and global spatio-temporal features, we design a parallel spike transformer block to replace sequential sub-blocks. Additionally, we propose a simplified spiking self-attention mechanism that omits the value parameter without compromising the model's performance. Experiments conducted on four datasets-PURE, UBFC-rPPG, UBFC-Phys, and MMPD demonstrate that the proposed model achieves a 10.1% reduction in power consumption compared to PhysFormer. Additionally, the power consumption of the transformer block is reduced by a factor of 12.2, while maintaining decent performance as PhysFormer and other ANN-based models.

摘要

人工神经网络(ANNs)有助于基于摄像头的远程光电容积脉搏波描记法(rPPG)测量心脏活动以及从面部视频中获取生理信号,如脉搏波、心率和呼吸率,且能提高测量精度。然而,大多数现有的基于ANN的方法需要大量计算资源,这给在移动设备上的有效部署带来了挑战。另一方面,脉冲神经网络(SNNs)由于其二进制和事件驱动的架构,在节能深度学习方面具有巨大潜力。据我们所知,我们是首个将SNNs引入rPPG领域的,提出了一种混合神经网络(HNN)模型——脉冲生理变换器(Spiking-PhysFormer),旨在降低功耗。具体而言,所提出的脉冲生理变换器由一个基于ANN的补丁嵌入块、基于SNN的变换器块和一个基于ANN的预测头组成。首先,为了简化变换器块同时保留其聚合局部和全局时空特征的能力,我们设计了一个并行脉冲变换器块来取代顺序子块。此外,我们提出了一种简化的脉冲自注意力机制,该机制在不影响模型性能的情况下省略了值参数。在四个数据集——PURE、UBFC-rPPG、UBFC-Phys和MMPD上进行的实验表明,与生理变换器相比,所提出的模型功耗降低了10.1%。此外,变换器块的功耗降低了12.2倍,同时保持了与生理变换器和其他基于ANN的模型相当的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验