Suppr超能文献

氨基酸功能通过仿生结晶使羧酸基 MOFs 在室温下的水相合成成为可能。

Amino Functionality Enables Aqueous Synthesis of Carboxylic Acid-Based MOFs at Room Temperature by Biomimetic Crystallization.

机构信息

Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.

出版信息

Inorg Chem. 2024 May 27;63(21):9801-9808. doi: 10.1021/acs.inorgchem.4c00245. Epub 2024 May 14.

Abstract

Enzyme immobilization within metal-organic frameworks (MOFs) is a promising solution to avoid denaturation and thereby utilize the desirable properties of enzymes outside of their native environments. The biomimetic mineralization strategy employs biomacromolecules as nucleation agents to promote the crystallization of MOFs in water at room temperature, thus overcoming pore size limitations presented by traditional postassembly encapsulation. Most biomimetic crystallization studies reported to date have employed zeolitic imidazole frameworks (ZIFs). Herein, we expand the library of MOFs suitable for biomimetic mineralization to include zinc(II) MOFs incorporating functionalized terephthalic acid linkers and study the catalytic performance of the enzyme@MOFs. Amine functionalization of terephthalic acids is shown to accelerate the formation of crystalline MOFs enabling new enzyme@MOFs to be synthesized. The structure and morphology of the enzyme@MOFs were characterized by PXRD, FTIR, and SEM-EDX, and the catalytic potential was evaluated. Increasing the linker length while retaining the amino moiety gave rise to a family of linkers; however, MOFs generated with the 2,2'-aminoterephthalic acid linker displayed the best catalytic performance. Our data also illustrate that the pH of the reaction mixture affects the crystal structure of the MOF and that this structural transformation impacts the catalytic performance of the enzyme@MOF.

摘要

将酶固定在金属有机骨架(MOFs)内是一种避免变性的有前途的解决方案,从而可以在其天然环境之外利用酶的理想性质。仿生矿化策略利用生物大分子作为成核剂,在室温下促进 MOFs 在水中的结晶,从而克服了传统后组装封装所带来的孔径限制。迄今为止,大多数仿生结晶研究都采用沸石咪唑骨架(ZIFs)。在此,我们将适合仿生矿化的 MOF 库扩展到包含功能化对苯二甲酸连接体的锌(II) MOF,并研究了酶@MOF 的催化性能。对苯二甲酸的胺官能化被证明可以加速结晶 MOF 的形成,从而可以合成新的酶@MOF。通过 PXRD、FTIR 和 SEM-EDX 对酶@MOF 的结构和形态进行了表征,并评估了其催化潜力。在保留氨基部分的同时增加连接体长度会产生一系列连接体;然而,用 2,2'-氨基对苯二甲酸连接体生成的 MOF 表现出最佳的催化性能。我们的数据还表明,反应混合物的 pH 值会影响 MOF 的晶体结构,这种结构转变会影响酶@MOF 的催化性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee92/11134488/9a9a3baa1928/ic4c00245_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验