Suppr超能文献

基于卷积非线性尖峰神经网络模型的多层次特征交互图像超分辨率网络。

Multi-level feature interaction image super-resolution network based on convolutional nonlinear spiking neural model.

机构信息

School of Computer and Software Engineering, Xihua University, Chengdu, 610039, China.

School of Computer and Software Engineering, Xihua University, Chengdu, 610039, China.

出版信息

Neural Netw. 2024 Sep;177:106366. doi: 10.1016/j.neunet.2024.106366. Epub 2024 May 6.

Abstract

Image super-resolution (ISR) is designed to recover lost detail information from low-resolution images, resulting in high-quality and high-definition high-resolution images. In the existing single ISR (SISR) methods based on convolutional neural networks (CNN), however, most of the models cannot effectively combine global and local information and are also easy to ignore the correlation between different hierarchical feature information. To address these problems, this study proposes a multi-level feature interactive image super-resolution network, which is constructed by the convolutional units inspired by nonlinear spiking mechanism in nonlinear spiking neural P systems, including shallow feature processing, deep feature extraction and fusion, and reconstruction modules. The different omni domain self-attention blocks are introduced to extract global information in the deep feature extraction and fusion stage and formed a feature enhancement module having a Transformer structure using a novel convolutional unit for extracting local information. Furthermore, to adaptively fuse features between different hierarchies, we design a multi-level feature fusion module, which not only can adaptively fuse features between different hierarchies, but also can better interact with contextual information. The proposed model is compared with 16 state-of-the-art or baseline models on five benchmark datasets. The experimental results show that the proposed model not only achieves good reconstruction performance, but also strikes a good balance between model parameters and performance.

摘要

图像超分辨率 (ISR) 旨在从低分辨率图像中恢复丢失的细节信息,从而得到高质量、高清晰度的高分辨率图像。然而,在现有的基于卷积神经网络 (CNN) 的单图像超分辨率 (SISR) 方法中,大多数模型无法有效地结合全局和局部信息,也容易忽略不同层次特征信息之间的相关性。针对这些问题,本研究提出了一种多级特征交互图像超分辨率网络,该网络由受非线性尖峰神经 P 系统中非线性尖峰机制启发的卷积单元构建,包括浅层特征处理、深层特征提取与融合以及重建模块。在深层特征提取和融合阶段引入不同的全领域自注意力块提取全局信息,并使用一种新的卷积单元形成具有 Transformer 结构的特征增强模块,用于提取局部信息。此外,为了自适应地融合不同层次之间的特征,我们设计了一个多级特征融合模块,它不仅可以自适应地融合不同层次之间的特征,还可以更好地与上下文信息交互。在五个基准数据集上,将所提出的模型与 16 种最先进或基线模型进行了比较。实验结果表明,所提出的模型不仅具有良好的重建性能,而且在模型参数和性能之间取得了很好的平衡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验