Suppr超能文献

基于非线性感知多尺度网络的单图像超分辨率算法。

Non-linear perceptual multi-scale network for single image super-resolution.

机构信息

School of Electrical and Information Engineering, Tianjin University, Tianjin, China.

School of Electrical and Information Engineering, Tianjin University, Tianjin, China.

出版信息

Neural Netw. 2022 Aug;152:201-211. doi: 10.1016/j.neunet.2022.04.020. Epub 2022 Apr 20.

Abstract

Recently, deep convolutional neural networks (CNNs) have been widely explored in single image super-resolution (SISR) and achieved remarkable progress. However, most of the existing CNN-based SISR networks with a single-stream structure fail to make full use of the multi-scale features of low-resolution (LR) image. While those multi-scale SR models often integrate the information with different receptive fields by means of linear fusion, which leads to the redundant feature extraction and hinders the reconstruction performance of the network. To address both issues, in this paper, we propose a non-linear perceptual multi-scale network (NLPMSNet) to fuse the multi-scale image information in a non-linear manner. Specifically, a novel non-linear perceptual multi-scale module (NLPMSM) is developed to learn more discriminative multi-scale feature correlation by using high-order channel attention mechanism, so as to adaptively extract image features at different scales. Besides, we present a multi-cascade residual nested group (MC-RNG) structure, which uses a global multi-cascade mechanism to organize multiple local residual nested groups (LRNG) to capture sufficient non-local hierarchical context information for reconstructing high-frequency details. LRNG uses a local residual nesting mechanism to stack NLPMSMs, which aims to form a more effective residual learning mechanism and obtain more representative local features. Experimental results show that, compared with the state-of-the-art SISR methods, the proposed NLPMSNet performs well in both quantitative metrics and visual quality with a small number of parameters.

摘要

最近,深度卷积神经网络(CNNs)在单图像超分辨率(SISR)中得到了广泛的研究,并取得了显著的进展。然而,大多数现有的基于 CNN 的 SISR 网络具有单一结构,未能充分利用低分辨率(LR)图像的多尺度特征。而那些多尺度 SR 模型通常通过线性融合来整合具有不同感受野的信息,这导致了冗余的特征提取,并阻碍了网络的重建性能。为了解决这两个问题,在本文中,我们提出了一种非线性感知多尺度网络(NLPMSNet),以非线性的方式融合多尺度图像信息。具体来说,我们开发了一种新颖的非线性感知多尺度模块(NLPMSM),通过高阶通道注意力机制来学习更具判别力的多尺度特征相关性,从而自适应地提取不同尺度的图像特征。此外,我们提出了一种多级联残差嵌套组(MC-RNG)结构,该结构使用全局多级联机制来组织多个局部残差嵌套组(LRNG),以捕获足够的非局部分层上下文信息,用于重建高频细节。LRNG 使用局部残差嵌套机制来堆叠 NLPMSMs,旨在形成更有效的残差学习机制,并获得更具代表性的局部特征。实验结果表明,与最先进的 SISR 方法相比,所提出的 NLPMSNet 在参数量较少的情况下,在定量指标和视觉质量方面都表现良好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验