Suppr超能文献

植物修复蜈蚣草对钒钛磁铁矿尾矿土壤有机碳转化的影响及其微生物群落机制

Bacterial community drives soil organic carbon transformation in vanadium titanium magnetite tailings through remediation using Pongamia pinnata.

机构信息

College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.

Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.

出版信息

J Environ Manage. 2024 Jun;360:121156. doi: 10.1016/j.jenvman.2024.121156. Epub 2024 May 13.

Abstract

With continuous mine exploitation, regional ecosystems have been damaged, resulting in a decline in the carbon sink capacity of mining areas. There is a global shortage of effective soil ecological restoration techniques for mining areas, especially for vanadium (V) and titanium (Ti) magnetite tailings, and the impact of phytoremediation techniques on the soil carbon cycle remains unclear. Therefore, this study aimed to explore the effects of long-term Pongamia pinnata remediation on soil organic carbon transformation of V-Ti magnetite tailing to reveal the bacterial community driving mechanism. In this study, it was found that four soil active organic carbon components (ROC, POC, DOC, and MBC) and three carbon transformation related enzymes (S-CL, S-SC, and S-PPO) in vanadium titanium magnetite tailings significantly (P < 0.05) increased with P. pinnata remediation. The abundance of carbon transformation functional genes such as carbon degradation, carbon fixation, and methane oxidation were also significantly (P < 0.05) enriched. The network nodes, links, and modularity of the microbial community, carbon components, and carbon transformation genes were enhanced, indicating stronger connections among the soil microbes, carbon components, and carbon transformation functional genes. Structural equation model (SEM) analysis revealed that the bacterial communities indirectly affected the soil organic carbon fraction and enzyme activity to regulate the soil total organic carbon after P. pinnata remediation. The soil active organic carbon fraction and free light fraction carbon also directly regulated the soil carbon and nitrogen ratio by directly affecting the soil total organic carbon content. These results provide a theoretical reference for the use of phytoremediation to drive soil carbon transformation for carbon sequestration enhancement through the remediation of degraded ecosystems in mining areas.

摘要

随着矿山的持续开采,区域生态系统受到破坏,矿区碳汇能力下降。全球范围内缺乏有效的矿区土壤生态修复技术,尤其是针对含钒(V)和钛(Ti)磁铁矿尾矿,植物修复技术对土壤碳循环的影响仍不清楚。因此,本研究旨在探讨长期麻疯树修复对 V-Ti 磁铁矿尾矿土壤有机碳转化的影响,揭示驱动土壤碳转化的细菌群落机制。在本研究中,发现四种土壤活性有机碳组分(ROC、POC、DOC 和 MBC)和三种与碳转化相关的酶(S-CL、S-SC 和 S-PPO)在钒钛磁铁矿尾矿中均显著(P < 0.05)增加。碳降解、碳固定和甲烷氧化等碳转化功能基因的丰度也显著(P < 0.05)富集。微生物群落、碳组分和碳转化基因的网络节点、链接和模块性增强,表明土壤微生物、碳组分和碳转化功能基因之间的联系更加紧密。结构方程模型(SEM)分析表明,细菌群落通过调节土壤总有机碳间接影响土壤有机碳组分和酶活性,从而影响土壤有机碳。土壤活性有机碳组分和自由轻组碳也直接通过直接影响土壤总有机碳含量来调节土壤碳氮比。这些结果为利用植物修复技术通过修复矿区退化生态系统来驱动土壤碳转化以增强碳固存提供了理论参考。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验