Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France.
Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France; Université de Lorraine, INSERM, IADI, 54000, Nancy, France; Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, 54000, Nancy, France.
Diagn Interv Imaging. 2024 Oct;105(10):371-378. doi: 10.1016/j.diii.2024.05.001. Epub 2024 May 13.
The purpose of this study was to evaluate the achievable radiation dose reduction of an ultra-high resolution computed tomography (UHR-CT) scanner using deep learning reconstruction (DLR) while maintaining temporal bone image quality equal to or better than high-resolution CT (HR-CT).
UHR-CT acquisitions were performed with variable tube voltages and currents at eight different dose levels (volumic CT dose index [CTDIvol] range: 4.6-79 mGy), 1024 matrix, and 0.25 mm slice thickness and reconstructed using DLR and hybrid iterative reconstruction (HIR) algorithms. HR-CT images were acquired using a standard protocol (120 kV/220 mAs; CTDI vol, 54.2 mGy, 512 matrix, and 0.5 mm slice thickness). Two radiologists rated the image quality of seven structures using a five point confidence scale on six cadaveric temporal bone CTs. A global image quality score was obtained for each CT protocol by summing the image quality scores of all structures.
With DLR, UHR-CT at 120 kV/220 mAs (CTDIvol, 50.9 mGy) and 140 kV/220 mAs (CTDIvol, 79 mGy) received the highest global image quality scores (4.88 ± 0.32 [standard deviation (SD)] [range: 4-5] and 4.85 ± 0.35 [range: 4-5], respectively; P = 0.31), while HR-CT at 120 kV/220 mAs and UHR-CT at 120 kV/20 mAs received the lowest (i.e., 3.14 ± 0.75 [SD] [range: 2-5] and 2.97 ± 0.86 [SD] [range: 1-5], respectively; P = 0.14). All the DLR protocols had better image quality scores than HR-CT with HIR.
UHR-CT with DLR can be performed with up to a tenfold reduction in radiation dose compared to HR-CT with HIR while maintaining or improving image quality.
本研究旨在评估使用深度学习重建(DLR)技术的超高分辨率计算机断层扫描(UHR-CT)扫描仪在保持与高分辨率 CT(HR-CT)同等或更好的颞骨图像质量的情况下,实现辐射剂量降低的程度。
使用可变管电压和电流在八个不同剂量水平(容积 CT 剂量指数 [CTDIvol] 范围:4.6-79 mGy)进行 UHR-CT 采集,采用 1024 矩阵和 0.25mm 切片厚度,并使用 DLR 和混合迭代重建(HIR)算法进行重建。HR-CT 图像采用标准协议(120 kV/220 mAs;CTDIvol,54.2 mGy,512 矩阵和 0.5mm 切片厚度)采集。两名放射科医生使用五分制置信度量表对六具尸体颞骨 CT 的七处结构的图像质量进行评分。通过对所有结构的图像质量评分进行求和,获得每个 CT 协议的总体图像质量评分。
使用 DLR,在 120 kV/220 mAs(CTDIvol,50.9 mGy)和 140 kV/220 mAs(CTDIvol,79 mGy)下的 UHR-CT 获得了最高的总体图像质量评分(4.88 ± 0.32 [标准差(SD)] [范围:4-5]和 4.85 ± 0.35 [范围:4-5];P = 0.31),而 120 kV/220 mAs 的 HR-CT 和 120 kV/20 mAs 的 UHR-CT 则获得了最低的评分(即 3.14 ± 0.75 [SD] [范围:2-5]和 2.97 ± 0.86 [SD] [范围:1-5];P = 0.14)。与 HR-CT 联合 HIR 相比,所有 DLR 方案的图像质量评分均优于 HR-CT 联合 HIR。
与 HR-CT 联合 HIR 相比,UHR-CT 联合 DLR 可将辐射剂量降低多达十倍,同时保持或提高图像质量。