Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France.
Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France; Université de Lorraine, INSERM, IADI, 54000, Nancy, France; Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, 54000, Nancy, France.
Diagn Interv Imaging. 2024 Jun;105(6):233-242. doi: 10.1016/j.diii.2024.02.001. Epub 2024 Feb 16.
The purpose of this study was to evaluate the ability of ultra-high-resolution computed tomography (UHR-CT) to assess stapes and chorda tympani nerve anatomy using a deep learning (DLR), a model-based, and a hybrid iterative reconstruction algorithm compared to simulated conventional CT.
CT acquisitions were performed with a Mercury 4.0 phantom. Images were acquired with a 1024 × 1024 matrix and a 0.25 mm slice thickness and reconstructed using DLR, model-based, and hybrid iterative reconstruction algorithms. To simulate conventional CT, images were also reconstructed with a 512 × 512 matrix and a 0.5 mm slice thickness. Spatial resolution, noise power spectrum, and objective high-contrast detectability were compared. Three radiologists evaluated the clinical acceptability of these algorithms by assessing the thickness and image quality of the stapes footplate and superstructure elements, as well as the image quality of the chorda tympani nerve bony and tympanic segments using a 5-point confidence scale on 13 temporal bone CT examinations reconstructed with the four algorithms.
UHR-CT provided higher spatial resolution than simulated conventional CT at the penalty of higher noise. DLR and model-based iterative reconstruction provided better noise reduction than hybrid iterative reconstruction, and DLR had the highest detectability index, regardless of the dose level. All stapedial structure thicknesses were thinner using UHR-CT by comparison with conventional simulated CT (P < 0.009). DLR showed the best visualization scores compared to the other reconstruction algorithms (P < 0.032).
UHR-CT with DLR results in less noise than UHR-CT with hybrid iterative reconstruction and significantly improves stapes and tympanic chorda tympani nerve depiction compared to simulated conventional CT and UHR-CT with iterative reconstruction.
本研究旨在评估超分辨率 CT(UHR-CT)使用深度学习(DLR)、基于模型和混合迭代重建算法评估镫骨和鼓索神经解剖结构的能力,并与模拟常规 CT 进行比较。
使用 Mercury 4.0 体模进行 CT 采集。图像采集矩阵为 1024×1024,层厚 0.25mm,并使用 DLR、基于模型和混合迭代重建算法进行重建。为了模拟常规 CT,图像也使用 512×512 矩阵和 0.5mm 层厚进行重建。比较了空间分辨率、噪声功率谱和客观高对比度检测能力。三位放射科医生通过评估 13 例颞骨 CT 检查中使用四种算法重建的镫骨足板和上部结构元素的厚度和图像质量,以及鼓索神经骨和鼓膜段的图像质量,使用 5 分置信度量表评估这些算法的临床可接受性。
UHR-CT 提供了比模拟常规 CT 更高的空间分辨率,但代价是噪声更高。与混合迭代重建相比,DLR 和基于模型的迭代重建提供了更好的降噪效果,并且无论剂量水平如何,DLR 都具有最高的检测指数。与模拟常规 CT 相比,所有镫骨结构的厚度在 UHR-CT 下都更薄(P < 0.009)。与其他重建算法相比,DLR 显示出最佳的可视化评分(P < 0.032)。
与混合迭代重建的 UHR-CT 相比,使用 DLR 的 UHR-CT 噪声更小,与模拟常规 CT 和迭代重建的 UHR-CT 相比,显著改善了镫骨和鼓索神经的描绘。