Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan.
Department of Central Radiology, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan.
Eur J Radiol. 2022 Jun;151:110280. doi: 10.1016/j.ejrad.2022.110280. Epub 2022 Apr 1.
This clinical and phantom study aimed to evaluate the impact of deep learning-based reconstruction (DLR) on image quality and its radiation dose optimization capability for multiphase hepatic CT relative to hybrid iterative reconstruction (HIR).
Task-based image quality was assessed with a physical evaluation phantom; the high- and low-contrast detectability of HIR and DLR images were computed from the noise power spectrum and task-based transfer function at five different size-specific dose estimate (SSDE) values in the range 5.3 to 18.0-mGy. For the clinical study, images of 73 patients who had undergone multiphase hepatic CT under both standard-dose (STD) and lower-dose (LD) examination protocols within a time interval of about four-months on average, were retrospectively examined. STD images were reconstructed with HIR, while LD with HIR (LD-HIR) and DLR (LD-DLR). SSDE, quantitative image noise, and contrast-to-noise ratio (CNR) were compared between protocols. The noise magnitude, noise texture, streak artifact, image sharpness, interface smoothness, and overall image quality were subjectively rated by two independent radiologists.
In phantom study, the high- and low-contrast detectability of DLR images obtained at 5.3-mGy and 7.3-mGy, respectively, were slightly higher than those obtained with HIR at the STD protocol dose (18.0-mGy). In clinical study, LD-DLR yielded lower image noise, higher CNR, and higher subjective scores for all evaluation criteria than STD (all, p ≤ 0.05), despite having 52.8% lower SSDE (8.0 ± 2.5 vs. 16.8 ± 3.4-mGy).
DLR improved the subjective and objective image quality of multiphase hepatic CT compared with HIR techniques, even at approximately half the radiation dose.
本临床和体模研究旨在评估基于深度学习的重建(DLR)对多期肝脏 CT 图像质量的影响,并相对于混合迭代重建(HIR),评估其在辐射剂量优化方面的能力。
使用物理评估体模评估基于任务的图像质量;从噪声功率谱和任务转移函数计算 HIR 和 DLR 图像的高、低对比度检测率,分别在 5.3 至 18.0-mGy 的五个不同的剂量估计特定值(SSDE)范围内。对于临床研究,回顾性分析了 73 例患者的多期肝脏 CT 图像,这些患者在大约四个月的平均时间间隔内在标准剂量(STD)和低剂量(LD)检查方案下进行了检查。STD 图像使用 HIR 重建,而 LD 使用 HIR(LD-HIR)和 DLR(LD-DLR)。比较了方案之间的 SSDE、定量图像噪声和对比噪声比(CNR)。两位独立放射科医生对噪声幅度、噪声纹理、条纹伪影、图像锐度、界面平滑度和整体图像质量进行了主观评价。
在体模研究中,在 5.3-mGy 和 7.3-mGy 下获得的 DLR 图像的高、低对比度检测率分别略高于 STD 方案剂量(18.0-mGy)下获得的 HIR 图像。在临床研究中,LD-DLR 产生的图像噪声更低、CNR 更高,并且所有评估标准的主观评分都高于 STD(均为 p ≤ 0.05),尽管 SSDE 降低了 52.8%(8.0 ± 2.5 比 16.8 ± 3.4-mGy)。
与 HIR 技术相比,DLR 可提高多期肝脏 CT 的主观和客观图像质量,即使在大约一半的辐射剂量下也是如此。