Suppr超能文献

使用定性等速分析预测膝关节的特定结构损伤。

Prediction of specific structural damage to the knee joint using qualitative isokinetic analysis.

机构信息

Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

Division of Joint Osteopathy and Traumatology, Center of Orthopedics Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

出版信息

BMC Musculoskelet Disord. 2024 May 14;25(1):382. doi: 10.1186/s12891-024-07434-w.

Abstract

BACKGROUND

An isokinetic moment curve (IMC) pattern-damaged structure prediction model may be of considerable value in assisting the diagnosis of knee injuries in clinical scenarios. This study aimed to explore the association between irregular IMC patterns and specific structural damages in the knee, including anterior cruciate ligament (ACL) rupture, meniscus (MS) injury, and patellofemoral joint (PFJ) lesions, and to develop an IMC pattern-damaged structure prediction model.

METHODS

A total of 94 subjects were enrolled in this study and underwent isokinetic testing of the knee joint (5 consecutive flexion-extension movements within the range of motion of 90°-10°, 60°/s). Qualitative analysis of the IMCs for all subjects was completed by two blinded examiners. A multinomial logistic regression analysis was used to investigate whether a specific abnormal curve pattern was associated with specific knee structural injuries and to test the predictive effectiveness of IMC patterns for specific structural damage in the knee.

RESULTS

The results of the multinomial logistic regression revealed a significant association between the irregular IMC patterns of the knee extensors and specific structural damages ("Valley" - ACL, PFJ, and ACL + MS, "Drop" - ACL, and ACL + MS, "Shaking" - ACL, MS, PFJ, and ACL + MS). The accuracy and Macro-averaged F1 score of the predicting model were 56.1% and 0.426, respectively.

CONCLUSION

The associations between irregular IMC patterns and specific knee structural injuries were identified. However, the accuracy and Macro-averaged F score of the established predictive model indicated its relatively low predictive efficacy. For the development of a more accurate predictive model, it may be essential to incorporate angle-specific and/or speed-specific analyses of qualitative and quantitative data in isokinetic testing. Furthermore, the utilization of artificial intelligence image recognition technology may prove beneficial for analyzing large datasets in the future.

摘要

背景

等速肌力曲线(IMC)模式损伤结构预测模型在临床场景中辅助膝关节损伤诊断可能具有重要价值。本研究旨在探讨不规则 IMC 模式与膝关节特定结构损伤(包括前交叉韧带(ACL)撕裂、半月板(MS)损伤和髌股关节(PFJ)病变)之间的关联,并建立 IMC 模式损伤结构预测模型。

方法

本研究共纳入 94 名受试者,进行膝关节等速测试(在 90°-10°、60°/s 的运动范围内进行 5 次连续的屈伸运动)。由两位盲法检查者对所有受试者的 IMC 进行定性分析。采用多项逻辑回归分析来探讨特定异常曲线模式是否与特定膝关节结构损伤相关,并测试 IMC 模式对膝关节特定结构损伤的预测有效性。

结果

多项逻辑回归分析结果显示,膝关节伸肌不规则 IMC 模式与特定结构损伤之间存在显著关联(“山谷”型-ACL、PFJ 和 ACL+MS,“下降”型-ACL,和 ACL+MS,“摇晃”型-ACL、MS、PFJ 和 ACL+MS)。预测模型的准确性和宏平均 F1 得分为 56.1%和 0.426。

结论

确定了不规则 IMC 模式与特定膝关节结构损伤之间的关联。然而,所建立的预测模型的准确性和宏平均 F 得分表明其预测效果相对较低。为了开发更准确的预测模型,在等速测试中纳入角度特异性和/或速度特异性的定性和定量数据分析可能至关重要。此外,未来利用人工智能图像识别技术可能有助于分析大量数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e4b/11091992/f120c6ea2774/12891_2024_7434_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验