Suppr超能文献

从噪声数据中学习非参数常微分方程。

Learning nonparametric ordinary differential equations from noisy data.

作者信息

Lahouel Kamel, Wells Michael, Rielly Victor, Lew Ethan, Lovitza David, Jedynak Bruno M

机构信息

TGen, 445 N. Fifth Street, Phoenix, AZ 85004.

Dept. of Math & Stat, Portland State University, 1855 SW Broadway, Portland, OR 97201.

出版信息

J Comput Phys. 2024 Jun 15;507. doi: 10.1016/j.jcp.2024.112971. Epub 2024 Mar 29.

Abstract

Learning nonparametric systems of Ordinary Differential Equations (ODEs) from noisy data is an emerging machine learning topic. We use the well-developed theory of Reproducing Kernel Hilbert Spaces (RKHS) to define candidates for for which the solution of the ODE exists and is unique. Learning consists of solving a constrained optimization problem in an RKHS. We propose a penalty method that iteratively uses the Representer theorem and Euler approximations to provide a numerical solution. We prove a generalization bound for the distance between and its estimator. Experiments are provided for the FitzHugh-Nagumo oscillator, the Lorenz system, and for predicting the Amyloid level in the cortex of aging subjects. In all cases, we show competitive results compared with the state-of-the-art.

摘要

从噪声数据中学习常微分方程(ODE)的非参数系统是一个新兴的机器学习主题。我们使用成熟的再生核希尔伯特空间(RKHS)理论来定义ODE解存在且唯一的候选对象。学习过程包括在RKHS中解决一个约束优化问题。我们提出一种惩罚方法,该方法迭代地使用表示定理和欧拉近似来提供数值解。我们证明了真实ODE与其估计值之间距离的泛化界。针对菲茨休 - 纳古莫振荡器、洛伦兹系统以及预测衰老受试者皮质中的淀粉样蛋白水平进行了实验。在所有情况下,我们都展示了与当前最优方法相比具有竞争力的结果。

相似文献

1
4
Robust estimation for ordinary differential equation models.常微分方程模型的稳健估计
Biometrics. 2011 Dec;67(4):1305-13. doi: 10.1111/j.1541-0420.2011.01577.x. Epub 2011 Mar 14.
7
The Connection Between Bayesian Estimation of a Gaussian Random Field and RKHS.贝叶斯估计高斯随机场与 RKHS 之间的联系。
IEEE Trans Neural Netw Learn Syst. 2015 Jul;26(7):1518-24. doi: 10.1109/TNNLS.2014.2337939. Epub 2014 Aug 5.
8
Optimal Transport in Reproducing Kernel Hilbert Spaces: Theory and Applications.再生核希尔伯特空间中的最优传输:理论与应用
IEEE Trans Pattern Anal Mach Intell. 2020 Jul;42(7):1741-1754. doi: 10.1109/TPAMI.2019.2903050. Epub 2019 Mar 4.

引用本文的文献

本文引用的文献

1
Kernel Ordinary Differential Equations.核常微分方程
J Am Stat Assoc. 2022;117(540):1711-1725. doi: 10.1080/01621459.2021.1882466. Epub 2021 Apr 27.
2
Gaussian Quadrature for Kernel Features.核特征的高斯求积法。
Adv Neural Inf Process Syst. 2017 Dec;30:6109-6119.
4
Alzheimer's disease and the amyloid-beta peptide.阿尔茨海默病与淀粉样β肽。
J Alzheimers Dis. 2010;19(1):311-23. doi: 10.3233/JAD-2010-1221.
5
Hamiltonian Systems and Transformation in Hilbert Space.哈密顿系统与希尔伯特空间中的变换
Proc Natl Acad Sci U S A. 1931 May;17(5):315-8. doi: 10.1073/pnas.17.5.315.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验