Suppr超能文献

一种基于热力学启发的人工智能搜索算法,用于求解常微分方程。

A thermodynamic inspired AI based search algorithm for solving ordinary differential equations.

作者信息

Murugesh V, Priyadharshini M, Mahesh T R, Esleman Esmael Adem

机构信息

Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, AP, India.

Department of Computer Science & Engineering, Faculty of Science and Technology (IcfaiTech), ICFAI Foundation for Higher Education, Hyderabad, 501 203, India.

出版信息

Sci Rep. 2025 May 25;15(1):18141. doi: 10.1038/s41598-025-03093-6.

Abstract

Solving Ordinary Differential Equations (ODEs) is an essential and very challenging computational problem in many areas of science and engineering like physics, biology, control system, and economics. However, traditional numerical methods such as Euler's method and the Runge-Kutta method generally suffer from problems like the grid dependency, propagation of errors and not all are applicable to nonlinear and systems that are complex. In return, metaheuristic algorithms have become promising alternatives that strongly transform the solution process into an optimization task. In this paper, we introduce a new search algorithm called Thermodynamic Inspired Search Algorithm (TSA) for approximate solution to linear ODEs (LODEs), nonlinear ODEs (NLODEs) and systems of ODEs (SODEs). Inspired by thermodynamic processes, heat exchange, energy minimization and entropy control, TSA employs thermodynamic on purpose for balancing global exploration and local exploitation throughout the search process. A mesh free ODE solver is constructed with an accurate approximation to the exact ODE using a Fourier periodic expansion basis function combined with the proposed algorithm and a weighted residual minimization method. The population of TSA is a population of candidate solutions that represent the coefficients of the Fourier expansion series. It comes up with energy levels based on energy associated with fitness values, enabling the adaptive exploration through energy exchange between solutions. Entropy is a diversity indicator that prevents the solutions from converging prematurely through the promotion of the solution diversity. The transformation from exploration to exploitation occurs gradually through a temperature reduction process. It is formulated as an optimization objective function with constraints, with the residuals of the ODEs and boundary conditions as the objective function and penalty functions ensuring constraint satisfaction. The performance of TSA is further evaluated on a diverse benchmark suite of twenty ODE problems which demonstrates that TSA is superior state-of-the-art ODE optimizers, namely ADE, PSO, and ABC in accuracy, convergence rate and robustness. Mesh free nature of TSA enables us to have the advantage of (i) not being grid dependent (iii) diversity preservation using entropy and (iii) Energy driven solution updates. TSA is shown through experimental results to achieve lower Root Mean Square Errors (RMSE) than existing algorithms on both IVPs and BVPs. In addition, the Fourier periodic expansion and the least-square weighted residual approach improve the precision of the approximations of TSA's performance. The proposed algorithm gives a robust, agile answer design framework for unraveling complicated ODE frameworks, with attainable investigation into PDE and hybrid local-global optimal enhancement plans.

摘要

求解常微分方程(ODEs)在物理、生物学、控制系统和经济学等许多科学与工程领域中都是一个至关重要且极具挑战性的计算问题。然而,诸如欧拉方法和龙格 - 库塔方法等传统数值方法通常存在网格依赖性、误差传播等问题,并且并非所有方法都适用于非线性和复杂系统。作为回报,元启发式算法已成为很有前景的替代方法,它将求解过程有力地转变为一个优化任务。在本文中,我们引入一种名为热力学启发搜索算法(TSA)的新搜索算法,用于线性常微分方程(LODEs)、非线性常微分方程(NLODEs)和常微分方程组(SODEs)的近似求解。受热力学过程、热交换、能量最小化和熵控制的启发,TSA特意采用热力学原理在整个搜索过程中平衡全局探索和局部开发。使用傅里叶周期展开基函数结合所提出的算法以及加权残差最小化方法,构建了一个无网格的常微分方程求解器,以精确逼近精确的常微分方程。TSA的种群是一组候选解,代表傅里叶展开级数的系数。它根据与适应度值相关的能量得出能量水平,通过解之间的能量交换实现自适应探索。熵是一个多样性指标,通过促进解的多样性来防止解过早收敛。从探索到开发的转变通过温度降低过程逐渐发生。它被表述为一个带有约束的优化目标函数,将常微分方程的残差和边界条件作为目标函数,并使用惩罚函数确保约束满足。在包含二十个常微分方程问题的多样化基准测试套件上进一步评估了TSA的性能,结果表明TSA在准确性、收敛速度和鲁棒性方面优于当前最先进的常微分方程优化器,即ADE、PSO和ABC。TSA的无网格特性使我们具有以下优势:(i)不依赖网格;(iii)使用熵保持多样性;(iii)能量驱动解更新。实验结果表明,TSA在初值问题(IVPs)和边值问题(BVPs)上均比现有算法实现更低的均方根误差(RMSE)。此外,傅里叶周期展开和最小二乘加权残差方法提高了TSA性能近似的精度。所提出的算法为解决复杂的常微分方程框架提供了一个强大、灵活的答案设计框架,并可对偏微分方程和混合局部 - 全局最优增强计划进行可行的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b28/12104321/e6d4cf6bcc3f/41598_2025_3093_Fig1a_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验