Suppr超能文献

核常微分方程

Kernel Ordinary Differential Equations.

作者信息

Dai Xiaowu, Li Lexin

机构信息

Department of Economics and Simons Institute for the Theory of Computing, the University of California, Berkeley, Berkeley, CA.

Department of Biostatistics and Epidemiology, the University of California, Berkeley, Berkeley, CA.

出版信息

J Am Stat Assoc. 2022;117(540):1711-1725. doi: 10.1080/01621459.2021.1882466. Epub 2021 Apr 27.

Abstract

Ordinary differential equation (ODE) is widely used in modeling biological and physical processes in science. In this article, we propose a new reproducing kernel-based approach for estimation and inference of ODE given noisy observations. We do not assume the functional forms in ODE to be known, or restrict them to be linear or additive, and we allow pairwise interactions. We perform sparse estimation to select individual functionals, and construct confidence intervals for the estimated signal trajectories. We establish the estimation optimality and selection consistency of kernel ODE under both the low-dimensional and high-dimensional settings, where the number of unknown functionals can be smaller or larger than the sample size. Our proposal builds upon the smoothing spline analysis of variance (SS-ANOVA) framework, but tackles several important problems that are not yet fully addressed, and thus extends the scope of existing SS-ANOVA as well. We demonstrate the efficacy of our method through numerous ODE examples.

摘要

常微分方程(ODE)在科学中对生物和物理过程建模方面有着广泛应用。在本文中,我们提出了一种基于再生核的新方法,用于在有噪声观测的情况下对常微分方程进行估计和推断。我们不假定常微分方程中的函数形式已知,也不将其限制为线性或可加形式,并且允许成对相互作用。我们进行稀疏估计以选择单个泛函,并为估计的信号轨迹构建置信区间。我们在低维和高维设置下都建立了核常微分方程的估计最优性和选择一致性,其中未知泛函的数量可以小于或大于样本量。我们的提议基于方差平滑样条分析(SS - ANOVA)框架构建,但解决了一些尚未得到充分解决的重要问题,从而也扩展了现有SS - ANOVA的范围。我们通过众多常微分方程示例证明了我们方法的有效性。

相似文献

1
Kernel Ordinary Differential Equations.核常微分方程
J Am Stat Assoc. 2022;117(540):1711-1725. doi: 10.1080/01621459.2021.1882466. Epub 2021 Apr 27.
3
Estimation and model selection for nonparametric function-on-function regression.非参数函数对函数回归的估计与模型选择
J Comput Graph Stat. 2022;31(3):835-845. doi: 10.1080/10618600.2022.2037434. Epub 2022 Mar 28.
9
Stochastic dynamic models and Chebyshev splines.随机动态模型与切比雪夫样条
Can J Stat. 2014 Dec 1;42(4):610-634. doi: 10.1002/cjs.11233.

本文引用的文献

1
Learning stable and predictive structures in kinetic systems.在动力学系统中学习稳定且可预测的结构。
Proc Natl Acad Sci U S A. 2019 Dec 17;116(51):25405-25411. doi: 10.1073/pnas.1905688116. Epub 2019 Nov 27.
3
Network Reconstruction From High-Dimensional Ordinary Differential Equations.基于高维常微分方程的网络重构
J Am Stat Assoc. 2017;112(520):1697-1707. doi: 10.1080/01621459.2016.1229197. Epub 2017 Aug 7.
4
Dynamic causal modelling revisited.重新审视动态因果建模。
Neuroimage. 2019 Oct 1;199:730-744. doi: 10.1016/j.neuroimage.2017.02.045. Epub 2017 Feb 17.
10
Network reconstruction using nonparametric additive ODE models.使用非参数加法常微分方程模型进行网络重构。
PLoS One. 2014 Apr 14;9(4):e94003. doi: 10.1371/journal.pone.0094003. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验