Colville Marshall J, Huang Ling-Ting, Schmidt Samuel, Chen Kevin, Vishwanath Karan, Su Jin, Williams Rebecca M, Bonassar Lawrence J, Reesink Heidi L, Paszek Matthew J
Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
bioRxiv. 2024 May 5:2024.05.05.592580. doi: 10.1101/2024.05.05.592580.
Lubricin, a lubricating glycoprotein abundant in synovial fluid, forms a low-friction brush polymer interface in tissues exposed to sliding motion including joints, tendon sheaths, and the surface of the eye. Despite its therapeutic potential in diseases such as osteoarthritis and dry eye disease, there are few sources available. Through rational design, we developed a series of recombinant lubricin analogs that utilize the species-specific tissue-binding domains at the N- and C-termini to increase biocompatibility while replacing the central mucin domain with an engineered variant that retains the lubricating properties of native lubricin. In this study, we demonstrate the tissue binding capacity of our engineered lubricin product and its retention in the joint space of rats. Next, we present a new bioprocess chain that utilizes a human-derived cell line to produce -glycosylation consistent with that of native lubricin and a purification strategy that capitalizes on the positively charged, hydrophobic N- and C-terminal domains. The bioprocess chain is demonstrated at 10 L scale in industry-standard equipment utilizing commonly available ion exchange, hydrophobic interaction and size exclusion chromatography resins. Finally, we confirmed the purity and lubricating properties of the recombinant biolubricant. The biomolecular engineering and bioprocessing strategies presented here are an effective means of lubricin production and could have broad applications to the study of mucins in general.
润滑素是一种在滑液中大量存在的润滑糖蛋白,它在包括关节、腱鞘和眼表面等承受滑动运动的组织中形成低摩擦刷状聚合物界面。尽管其在骨关节炎和干眼病等疾病中具有治疗潜力,但可获取的来源却很少。通过合理设计,我们开发了一系列重组润滑素类似物,这些类似物利用N端和C端的物种特异性组织结合结构域来提高生物相容性,同时用一种保留天然润滑素润滑特性的工程变体取代中央粘蛋白结构域。在本研究中,我们展示了我们的工程化润滑素产品的组织结合能力及其在大鼠关节腔中的留存情况。接下来,我们提出了一种新的生物工艺链,该工艺链利用人源细胞系产生与天然润滑素一致的O-糖基化,以及一种利用带正电荷的疏水N端和C端结构域的纯化策略。该生物工艺链在使用常用离子交换、疏水相互作用和尺寸排阻色谱树脂的工业标准设备中以10升规模进行了展示。最后,我们证实了重组生物润滑剂的纯度和润滑特性。本文介绍的生物分子工程和生物加工策略是生产润滑素的有效手段,并且可能广泛应用于一般粘蛋白的研究。