Zhao Yifan, Luquette Lovelace J, Veit Alexander D, Wang Xiaochen, Xi Ruibin, Viswanadham Vinayak V, Zhang Yuwei, Shao Diane D, Walsh Christopher A, Yang Hong Wei, Johnson Mark D, Park Peter J
bioRxiv. 2025 Apr 3:2024.04.26.587806. doi: 10.1101/2024.04.26.587806.
Improvements in single-cell whole-genome sequencing (scWGS) assays have enabled detailed characterization of somatic copy number alterations (CNAs) at the single-cell level. Yet, current computational methods are mostly designed for detecting chromosome-scale changes in cancer samples with low sequencing coverage. Here, we introduce HiScanner (High-resolution Single-Cell Allelic copy Number callER), which combines read depth, B-allele frequency, and haplotype phasing to identify CNAs with high resolution. In simulated data, HiScanner consistently outperforms state-of-the-art methods across various CNA types and sizes. When applied to high-coverage scWGS data from 65 cells across 11 neurotypical human brains, HiScanner shows a superior ability to detect smaller CNAs, uncovering distinct CNA patterns between neurons and oligodendrocytes. We also generated low-coverage scWGS data from 179 cells sampled from the same meningioma patient at two time points. For this serial dataset, integration of CNAs with point mutations revealed evolutionary trajectories of tumor cells. These findings show that HiScanner enables accurate characterization of frequency, clonality, and distribution of CNAs at the single-cell level in both non-neoplastic and neoplastic cells.
单细胞全基因组测序(scWGS)分析方法的改进使得在单细胞水平上对体细胞拷贝数改变(CNA)进行详细表征成为可能。然而,当前的计算方法大多是为在低测序覆盖度的癌症样本中检测染色体水平的变化而设计的。在此,我们介绍HiScanner(高分辨率单细胞等位基因拷贝数调用器),它结合了读深度、B等位基因频率和单倍型定相来高分辨率地识别CNA。在模拟数据中,HiScanner在各种CNA类型和大小上始终优于现有方法。当应用于来自11个典型人类大脑中65个细胞的高覆盖度scWGS数据时,HiScanner显示出检测较小CNA的卓越能力,揭示了神经元和少突胶质细胞之间不同的CNA模式。我们还从同一脑膜瘤患者在两个时间点采集的179个细胞中生成了低覆盖度scWGS数据。对于这个连续数据集,将CNA与点突变整合揭示了肿瘤细胞的进化轨迹。这些发现表明,HiScanner能够在单细胞水平上准确表征非肿瘤细胞和肿瘤细胞中CNA的频率、克隆性和分布。