Suppr超能文献

在阿尔茨海默病连续体中使用睡眠与认知综合指数的预测建模:一项长达十年的历史性队列研究。

Predictive Modeling Using a Composite Index of Sleep and Cognition in the Alzheimer's Continuum: A Decade-Long Historical Cohort Study.

作者信息

Yu Xianfeng, Deng Shuqing, Liu Junxin, Zhang Mingkai, Zhang Liang, Li Ruixian, Zhang Wei, Han Ying

机构信息

Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.

Department of Psychology, Brandeis University, Waltham, MA, USA.

出版信息

J Alzheimers Dis Rep. 2024 Apr 8;8(1):589-600. doi: 10.3233/ADR-240001. eCollection 2024.

Abstract

BACKGROUND

Sleep disturbances frequently affect Alzheimer's disease (AD), with up to 65% patients reporting sleep-related issues that may manifest up to a decade before AD symptoms.

OBJECTIVE

To construct a nomogram that synthesizes sleep quality and cognitive performance for predicting cognitive impairment (CI) conversion outcomes.

METHODS

Using scores from three well-established sleep assessment tools, Pittsburg Sleep Quality Index, REM Sleep Behavior Disorder Screening Questionnaire, and Epworth Sleepiness Scale, we created the Sleep Composite Index (SCI), providing a comprehensive snapshot of an individual's sleep status. Initially, a CI conversion prediction model was formed via COX regression, fine-tuned by bidirectional elimination. Subsequently, an optimized prediction model through COX regression, depicted as a nomogram, offering predictions for CI development in 5, 8, and 12 years among cognitively unimpaired (CU) individuals.

RESULTS

After excluding CI patients at baseline, our study included 816 participants with complete baseline and follow-up data. The CU group had a mean age of 66.1±6.7 years, with 36.37% males, while the CI group had an average age of 70.3±9.0 years, with 39.20% males. The final model incorporated glial fibrillary acidic protein, Verbal Fluency Test and SCI, and an AUC of 0.8773 (0.792-0.963).

CONCLUSIONS

In conclusion, the sleep-cognition nomogram we developed could successfully predict the risk of converting to CI in elderly participants and could potentially guide the design of interventions for rehabilitation and/or cognitive enhancement to improve the living quality for healthy older adults, detect at-risk individuals, and even slow down the progression of AD.

摘要

背景

睡眠障碍经常影响阿尔茨海默病(AD),多达65%的患者报告存在与睡眠相关的问题,这些问题可能在AD症状出现前十年就已显现。

目的

构建一个综合睡眠质量和认知表现的列线图,以预测认知障碍(CI)的转化结果。

方法

我们使用匹兹堡睡眠质量指数、快速眼动睡眠行为障碍筛查问卷和爱泼华嗜睡量表这三种成熟的睡眠评估工具的得分,创建了睡眠综合指数(SCI),全面反映个体的睡眠状况。最初,通过COX回归形成CI转化预测模型,并通过双向消除进行微调。随后,通过COX回归得到一个优化的预测模型,以列线图的形式呈现,为认知未受损(CU)个体在5年、8年和12年后发生CI的情况提供预测。

结果

在排除基线时的CI患者后,我们的研究纳入了816名具有完整基线和随访数据的参与者。CU组的平均年龄为66.1±6.7岁,男性占36.37%,而CI组的平均年龄为70.3±9.0岁,男性占39.20%。最终模型纳入了胶质纤维酸性蛋白、语言流畅性测试和SCI,曲线下面积为0.8773(0.792 - 0.963)。

结论

总之,我们开发的睡眠 - 认知列线图能够成功预测老年参与者转化为CI的风险,并有可能指导康复和/或认知增强干预措施的设计,以提高健康老年人的生活质量,检测高危个体,甚至减缓AD的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a59/11091728/63365e096c99/adr-8-adr240001-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验