文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Research progress of cell membrane biomimetic nanoparticles for circulating tumor cells.

作者信息

Zhang Yingfeng, Wang Jia

机构信息

Department of Gynecology and Obstetrics, University-Town Hospital of Chongqing Medical University, Chongqing, China.

出版信息

Front Oncol. 2024 Apr 30;14:1389775. doi: 10.3389/fonc.2024.1389775. eCollection 2024.


DOI:10.3389/fonc.2024.1389775
PMID:38746681
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11091305/
Abstract

Early detection of cancer is crucial to reducing fatalities and improving patient outcomes. Metastasis is the first stage of aggressive cancers, often occurring before primary lesions can be seen. It occurs when cancerous cells disseminate to distant, non-malignant organs through the bloodstream, known as circulating tumor cells (CTCs). CTCs, or cancer tumor cells, are valuable indicators for predicting treatment response, metastasis progression, and disease progression. However, they are primarily used for research due to challenges like heterogeneity, separation from blood, and lack of clinical validation. Only a few methods have been approved for clinical use. One area of research is the isolation and identification of CTCs, which could significantly impact early cancer detection and prognosis. Current technologies using whole-blood samples use size, immunoaffinity, and density approaches, along with positive and negative enrichment techniques. Surface modification of nanomaterials is important for effective cancer therapies because it improves their ability to target and reduces interactions with healthy tissues. Consequently, researchers have created biomimetic nanoparticles covered with cell membranes using functional, targeted, and biocompatible coating technology. Nanoparticles with membranes can target specific cells, stay in circulation for longer, and avoid immune responses, which makes them much better at capturing CTCs. This study examines the current opportunities and difficulties associated with using cell membrane-coated nanoparticles as a capture technique for CTCs. In addition, we examine potential future developments in light of the current obstacles and investigate areas that require further research to fully understand its growing clinical possibilities.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/8be4e66c5a48/fonc-14-1389775-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/2aee25bedd03/fonc-14-1389775-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/d88d7ab6e026/fonc-14-1389775-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/c963a279e7bd/fonc-14-1389775-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/253f3c78005d/fonc-14-1389775-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/a65db2ec6c70/fonc-14-1389775-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/e39b768003ae/fonc-14-1389775-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/bf2bba9d4134/fonc-14-1389775-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/d473882b3f7a/fonc-14-1389775-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/852fcc6ffc34/fonc-14-1389775-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/c5d790caab25/fonc-14-1389775-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/ff073cfa63c1/fonc-14-1389775-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/8be4e66c5a48/fonc-14-1389775-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/2aee25bedd03/fonc-14-1389775-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/d88d7ab6e026/fonc-14-1389775-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/c963a279e7bd/fonc-14-1389775-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/253f3c78005d/fonc-14-1389775-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/a65db2ec6c70/fonc-14-1389775-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/e39b768003ae/fonc-14-1389775-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/bf2bba9d4134/fonc-14-1389775-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/d473882b3f7a/fonc-14-1389775-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/852fcc6ffc34/fonc-14-1389775-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/c5d790caab25/fonc-14-1389775-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/ff073cfa63c1/fonc-14-1389775-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/11091305/8be4e66c5a48/fonc-14-1389775-g012.jpg

相似文献

[1]
Research progress of cell membrane biomimetic nanoparticles for circulating tumor cells.

Front Oncol. 2024-4-30

[2]
Neutrophil membrane-coated immunomagnetic nanoparticles for efficient isolation and analysis of circulating tumor cells.

Biosens Bioelectron. 2022-10-1

[3]
Detection of circulating tumor cells: opportunities and challenges.

Biomark Res. 2022-8-13

[4]
Surface modification potentials of cell membrane-based materials for targeted therapies: a chemotherapy-focused review.

Nanomedicine (Lond). 2023-8

[5]
Leukocyte-Repelling Biomimetic Immunomagnetic Nanoplatform for High-Performance Circulating Tumor Cells Isolation.

Small. 2019-4-1

[6]
Circulating Tumor Cells in Gastrointestinal Cancers: Current Status and Future Perspectives.

Front Oncol. 2019-12-13

[7]
New insights into the correlations between circulating tumor cells and target organ metastasis.

Signal Transduct Target Ther. 2023-12-21

[8]
Effective capture of circulating tumor cells from an S180-bearing mouse model using electrically charged magnetic nanoparticles.

J Nanobiotechnology. 2019-5-4

[9]
Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells.

Acc Chem Res. 2014-10-21

[10]
Methodology for the Isolation and Analysis of CTCs.

Adv Exp Med Biol. 2020

引用本文的文献

[1]
Recent advances in cell membrane-based biomimetic delivery systems for Parkinson's disease: Perspectives and challenges.

Asian J Pharm Sci. 2025-8

[2]
Magnetic-Assisted Manipulation of Rare Blood Cells for Diagnosis: A Systematic Review.

Biotechnol Bioeng. 2025-6-26

本文引用的文献

[1]
Lipid-hybrid cell-derived biomimetic functional materials: A state-of-the-art multifunctional weapon against tumors.

Mater Today Bio. 2023-8-3

[2]
Immune cell membrane-based biomimetic nanomedicine for treating cancer metastasis.

Acta Pharm Sin B. 2023-6

[3]
Erythrocyte-Cancer Hybrid Membrane-Camouflaged Prussian Blue Nanoparticles with Enhanced Photothermal Therapy in Tumors.

ACS Omega. 2023-6-9

[4]
Targeted co-delivery of PD-L1 monoclonal antibody and sorafenib to circulating tumor cells via platelet-functionalized nanocarriers.

Biochem Biophys Res Commun. 2023-9-3

[5]
Circulating tumour cells for early detection of clinically relevant cancer.

Nat Rev Clin Oncol. 2023-7

[6]
Current progress of mesenchymal stem cell membrane-camouflaged nanoparticles for targeted therapy.

Biomed Pharmacother. 2023-5

[7]
Biology, vulnerabilities and clinical applications of circulating tumour cells.

Nat Rev Cancer. 2023-2

[8]
A Biomimetic Metal-Organic Framework Nanosystem Modulates Immunosuppressive Tumor Microenvironment Metabolism to Amplify Immunotherapy.

J Control Release. 2023-1

[9]
CABA-V7: a prospective biomarker selected trial of cabazitaxel treatment in AR-V7 positive prostate cancer patients.

Eur J Cancer. 2022-12

[10]
Development and application of bionic systems consisting of tumor-cell membranes.

J Zhejiang Univ Sci B.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索