文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用带电荷的磁性纳米粒子从荷瘤 S180 小鼠模型中有效捕获循环肿瘤细胞。

Effective capture of circulating tumor cells from an S180-bearing mouse model using electrically charged magnetic nanoparticles.

机构信息

Institue of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, China.

出版信息

J Nanobiotechnology. 2019 May 4;17(1):59. doi: 10.1186/s12951-019-0491-1.


DOI:10.1186/s12951-019-0491-1
PMID:31054582
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6499951/
Abstract

BACKGROUND: Technology enabling the separation of rare circulating tumor cells (CTCs) provides the potential to enhance our knowledge of cancer metastasis and improve the care of cancer patients. Modern detection approaches commonly depend on tumor antigens or the physical size of CTCs. However, few studies report the detection of CTCs by the electrical differences between cancer cells and normal cells. RESULTS: In this study, we report a procedure for capturing CTCs from blood samples using electrically charged superparamagnetic nanoparticles (NPs). We found that only positively charged NPs attached to cancer cells, while negatively charged NPs did not. The capture method with positively charged NPs offered a sensitivity of down to 4 CTCs in 1 mL blood samples and achieved a superior capture yield (> 70%) for a high number of CTCs in blood samples (10-10 cells/mL). Following an in vitro evaluation, S180-bearing mice were employed as an in vivo model to assess the specificity and sensitivity of the capture procedure. The number of CTCs in blood from tumor-bearing mice was significantly higher than that in blood from healthy controls (on average, 75.8 ± 16.4 vs. zero CTCs/100 μL of blood, p < 0.0001), suggesting the high sensitivity and specificity of our method. CONCLUSIONS: Positively charged NPs combined with an in vivo tumor model demonstrated that CTCs can be distinguished and isolated from other blood cells based on their electrical properties.

摘要

背景:使稀有循环肿瘤细胞(CTC)分离成为可能的技术提供了增强我们对癌症转移认识和改善癌症患者护理的潜力。现代检测方法通常依赖于肿瘤抗原或 CTC 的物理大小。然而,很少有研究报告通过癌细胞和正常细胞之间的电差异来检测 CTC。

结果:在这项研究中,我们报告了一种使用带电超顺磁纳米粒子(NPs)从血液样本中捕获 CTC 的程序。我们发现只有带正电荷的 NPs 附着在癌细胞上,而带负电荷的 NPs 则没有。带正电荷的 NPs 的捕获方法对 1 mL 血液样本中的 4 个 CTCs 具有敏感性,并且对血液样本中的高数量 CTCs(10-10 个细胞/mL)实现了更高的捕获效率(>70%)。经过体外评估,我们使用携带 S180 的小鼠作为体内模型来评估捕获程序的特异性和敏感性。荷瘤小鼠血液中的 CTC 数量明显高于健康对照组(平均为 75.8±16.4 个/100 μL 血液,p<0.0001),表明我们的方法具有高灵敏度和特异性。

结论:带正电荷的 NPs 与体内肿瘤模型相结合表明,可以根据其电学特性区分和分离 CTC 与其他血细胞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32cd/6499951/ebce337f635c/12951_2019_491_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32cd/6499951/c7f1f7661da3/12951_2019_491_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32cd/6499951/c388df3e62dd/12951_2019_491_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32cd/6499951/e42c06a63bf9/12951_2019_491_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32cd/6499951/0805a8eab133/12951_2019_491_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32cd/6499951/153a8b3de161/12951_2019_491_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32cd/6499951/435a75404ebc/12951_2019_491_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32cd/6499951/ebce337f635c/12951_2019_491_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32cd/6499951/c7f1f7661da3/12951_2019_491_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32cd/6499951/c388df3e62dd/12951_2019_491_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32cd/6499951/e42c06a63bf9/12951_2019_491_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32cd/6499951/0805a8eab133/12951_2019_491_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32cd/6499951/153a8b3de161/12951_2019_491_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32cd/6499951/435a75404ebc/12951_2019_491_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32cd/6499951/ebce337f635c/12951_2019_491_Fig7_HTML.jpg

相似文献

[1]
Effective capture of circulating tumor cells from an S180-bearing mouse model using electrically charged magnetic nanoparticles.

J Nanobiotechnology. 2019-5-4

[2]
Multi-targeting magnetic hyaluronan capsules efficiently capturing circulating tumor cells.

J Colloid Interface Sci. 2019-3-11

[3]
Combining hybrid cell membrane modified magnetic nanoparticles and inverted microfluidic chip for in situ CTCs capture and inactivation.

Biosens Bioelectron. 2024-11-1

[4]
Dual-target recognition sandwich assay based on core-shell magnetic mesoporous silica nanoparticles for sensitive detection of breast cancer cells.

Talanta. 2018-2-3

[5]
Feasibility of a novel one-stop ISET device to capture CTCs and its clinical application.

Oncotarget. 2017-1-10

[6]
Rapid Label-Free Isolation of Circulating Tumor Cells from Patients' Peripheral Blood Using Electrically Charged FeO Nanoparticles.

ACS Appl Mater Interfaces. 2020-1-14

[7]
Electrostatic reaction for the detection of circulating tumor cells as a potential diagnostic biomarker for metastasis in solid tumor.

Nanotheranostics. 2020

[8]
Detection of EpCAM positive and negative circulating tumor cells in metastatic breast cancer patients.

Acta Oncol. 2011-1-24

[9]
A platform for primary tumor origin identification of circulating tumor cells via antibody cocktail-based in vivo capture and specific aptamer-based multicolor fluorescence imaging strategy.

Anal Chim Acta. 2019-7-26

[10]
High-Efficiency Isolation and Rapid Identification of Heterogeneous Circulating Tumor Cells (CTCs) Using Dual-Antibody-Modified Fluorescent-Magnetic Nanoparticles.

ACS Appl Mater Interfaces. 2019-10-15

引用本文的文献

[1]
Sericin-coated MnO@CeO nanocatalysts enable pH-responsive and synergistic vincristine delivery for lung cancer therapy.

Sci Rep. 2025-7-11

[2]
Bioactivity Evaluation and Phytochemical Characterization of (Thunb.) Siebold Leaf Extract.

Biomedicines. 2024-12-23

[3]
Surface Engineering of Magnetic Iron Oxide Nanoparticles for Breast Cancer Diagnostics and Drug Delivery.

Int J Nanomedicine. 2024

[4]
A comparative study of sericin and gluten for magnetic nanoparticle-mediated drug delivery to breast cancer cell lines.

Sci Rep. 2024-8-5

[5]
Enhancing Cisplatin Efficacy with Low Toxicity in Solid Breast Cancer Cells Using pH-Charge-Reversal Sericin-Based Nanocarriers: Development, Characterization, and Biological Assessment.

ACS Omega. 2024-3-12

[6]
Anticancer and Targeting Activity of Phytopharmaceutical Structural Analogs of a Natural Peptide from and Related Peptide-Decorated Gold Nanoparticles.

Int J Mol Sci. 2023-3-14

[7]
Isolation, Detection and Analysis of Circulating Tumour Cells: A Nanotechnological Bioscope.

Pharmaceutics. 2023-1-13

[8]
Evaluation of the Cytotoxicity of Cationic Polymers on Glioblastoma Cancer Stem Cells.

J Funct Biomater. 2022-12-28

[9]
Effect of HIT Components on the Development of Breast Cancer Cells.

Life (Basel). 2021-8-13

[10]
Mapping Surface Charge Distribution of Single-Cell via Charged Nanoparticle.

Cells. 2021-6-16

本文引用的文献

[1]
A novel therapeutic anticancer property of raw garlic extract via injection but not ingestion.

Cell Death Discov. 2018-11-21

[2]
Detection of Circulating Tumor Cells Using Microfluidics.

ACS Comb Sci. 2018-2-2

[3]
Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics.

BMC Cancer. 2016-8-8

[4]
Lactate Contribution to the Tumor Microenvironment: Mechanisms, Effects on Immune Cells and Therapeutic Relevance.

Front Immunol. 2016-2-16

[5]
Isolation and Functional Analysis of Human Neutrophils.

Curr Protoc Immunol. 2015-11-2

[6]
Effective capture of circulating tumor cells from a transgenic mouse lung cancer model using dendrimer surfaces immobilized with anti-EGFR.

Anal Chem. 2015-10-6

[7]
SIGNAL TRANSDUCTION. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling.

Science. 2015-8-21

[8]
Epithelial cancer cells exhibit different electrical properties when cultured in 2D and 3D environments.

Biochim Biophys Acta. 2013-11

[9]
Circulating tumor cells: approaches to isolation and characterization.

J Cell Biol. 2011-2-7

[10]
Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases.

Clin Cancer Res. 2004-10-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索