Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
Division of Microbial Ecology, University of Vienna, Wien, Austria.
Protein Sci. 2024 Jun;33(6):e5014. doi: 10.1002/pro.5014.
A heterodisulfide reductase-like complex (sHdr) and novel lipoate-binding proteins (LbpAs) are central players of a wide-spread pathway of dissimilatory sulfur oxidation. Bioinformatic analysis demonstrate that the cytoplasmic sHdr-LbpA systems are always accompanied by sets of sulfur transferases (DsrE proteins, TusA, and rhodaneses). The exact composition of these sets may vary depending on the organism and sHdr system type. To enable generalizations, we studied model sulfur oxidizers from distant bacterial phyla, that is, Aquificota and Pseudomonadota. DsrE3C of the chemoorganotrophic Alphaproteobacterium Hyphomicrobium denitrificans and DsrE3B from the Gammaproteobacteria Thioalkalivibrio sp. K90mix, an obligate chemolithotroph, and Thiorhodospira sibirica, an obligate photolithotroph, are homotrimers that donate sulfur to TusA. Additionally, the hyphomicrobial rhodanese-like protein Rhd442 exchanges sulfur with both TusA and DsrE3C. The latter is essential for sulfur oxidation in Hm. denitrificans. TusA from Aquifex aeolicus (AqTusA) interacts physiologically with AqDsrE, AqLbpA, and AqsHdr proteins. This is particularly significant as it establishes a direct link between sulfur transferases and the sHdr-LbpA complex that oxidizes sulfane sulfur to sulfite. In vivo, it is unlikely that there is a strict unidirectional transfer between the sulfur-binding enzymes studied. Rather, the sulfur transferases form a network, each with a pool of bound sulfur. Sulfur flux can then be shifted in one direction or the other depending on metabolic requirements. A single pair of sulfur-binding proteins with a preferred transfer direction, such as a DsrE3-type protein towards TusA, may be sufficient to push sulfur into the sink where it is further metabolized or needed.
一种异二硫键还原酶样复合物 (sHdr) 和新型脂酰结合蛋白 (LbpAs) 是广泛存在的异化硫氧化途径的核心组成部分。生物信息学分析表明,细胞质 sHdr-LbpA 系统总是伴随着一系列硫转移酶 (DsrE 蛋白、TusA 和 rhodaneses)。这些系统的确切组成可能因生物体和 sHdr 系统类型而异。为了能够进行概括,我们研究了来自遥远细菌门的模型硫氧化菌,即 Aquificota 和 Pseudomonadota。化能有机营养的α变形菌 Hyphomicrobium denitrificans 的 DsrE3C 和需氧化能自养的γ变形菌 Thioalkalivibrio sp. K90mix 以及严格化能自养的硫还原菌 Thiorhodospira sibirica 的 DsrE3B 是将硫捐赠给 TusA 的同三聚体。此外,hyphomicrobial rhodanese 样蛋白 Rhd442 与 TusA 和 DsrE3C 交换硫。后者对于 Hm. denitrificans 的硫氧化是必不可少的。来自 Aquifex aeolicus (AqTusA) 的 TusA 在生理上与 AqDsrE、AqLbpA 和 AqsHdr 蛋白相互作用。这一点尤其重要,因为它在硫转移酶和氧化硫烷硫为亚硫酸盐的 sHdr-LbpA 复合物之间建立了直接联系。在体内,研究的硫结合酶之间不太可能存在严格的单向转移。相反,硫转移酶形成一个网络,每个网络都有一个结合硫的池。然后,可以根据代谢需求将硫通量转移到一个方向或另一个方向。一对具有首选转移方向的硫结合蛋白,例如 DsrE3 型蛋白朝向 TusA,可能足以将硫推入进一步代谢或需要的汇点。