Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.
Max Planck Queensland Centre, Queensland University of Technology, Brisbane City, Queensland, Australia.
Appl Environ Microbiol. 2024 Jun 18;90(6):e0220323. doi: 10.1128/aem.02203-23. Epub 2024 May 15.
The O antigen (OAg) polysaccharide is one of the most diverse surface molecules of Gram-negative bacterial pathogens. The structural classification of OAg, based on serological typing and sequence analysis, is important in epidemiology and the surveillance of outbreaks of bacterial infections. Despite the diverse chemical structures of OAg repeating units (RUs), the genetic basis of RU assembly remains poorly understood and represents a major limitation in assigning gene functions in polysaccharide biosynthesis. Here, we describe a genetic approach to interrogate the functional order of glycosyltransferases (GTs). Using as a model, we established an initial glycosyltransferase (IT)-controlled system, which allows functional order allocation of the subsequent GT in a 2-fold manner as follows: (i) first, by reporting the growth defects caused by the sequestration of UndP through disruption of late GTs and (ii) second, by comparing the molecular sizes of stalled OAg intermediates when each putative GT is disrupted. Using this approach, we demonstrate that for RfbF and RfbG, the GT involved in the assembly of backbone OAg RU, RfbG, is responsible for both the committed step of OAg synthesis and the third transferase for the second L-Rha. We also show that RfbF functions as the last GT to complete the OAg RU backbone. We propose that this simple and effective genetic approach can be also extended to define the functional order of enzymatic synthesis of other diverse polysaccharides produced both by Gram-negative and Gram-positive bacteria.IMPORTANCEThe genetic basis of enzymatic assembly of structurally diverse O antigen (OAg) repeating units (RUs) in Gram-negative pathogens is poorly understood, representing a major limitation in our understanding of gene functions for the synthesis of bacterial polysaccharides. We present a simple genetic approach to confidently assign glycosyltransferase (GT) functions and the order in which they act during assembly of the OAg RU. We employed this approach to determine the functional order of GTs involved in OAg assembly. This approach can be generally applied in interrogating GT functions encoded by other bacterial polysaccharides to advance our understanding of diverse gene functions in the biosynthesis of polysaccharides, key knowledge in advancing biosynthetic polysaccharide production.
O 抗原(OAg)多糖是革兰氏阴性细菌病原体中最具多样性的表面分子之一。基于血清学分型和序列分析的 OAg 结构分类在流行病学和细菌感染爆发的监测中很重要。尽管 OAg 重复单元(RU)的化学结构多种多样,但 RU 组装的遗传基础仍知之甚少,这是在多糖生物合成中分配基因功能的主要限制。在这里,我们描述了一种用于研究糖基转移酶(GT)功能顺序的遗传方法。我们以 作为模型,建立了一个初始糖基转移酶(IT)控制体系,该体系以 2 倍的方式允许随后 GT 的功能顺序分配,如下所示:(i)首先,通过破坏晚期 GT 来隔离 UndP 引起的生长缺陷,(ii)其次,通过比较每个假定 GT 被破坏时停滞不前的 OAg 中间体的分子大小。使用这种方法,我们证明对于 RfbF 和 RfbG,参与 骨架 OAg RU 组装的 GT,RfbG,负责 OAg 合成的承诺步骤和第二个 L-Rha 的第三个转移酶。我们还表明,RfbF 作为完成 OAg RU 骨架的最后一个 GT 起作用。我们提出,这种简单有效的遗传方法也可以扩展到定义其他由革兰氏阴性和革兰氏阳性细菌产生的结构多样的多糖的酶促合成的功能顺序。
重要性
革兰氏阴性病原体中结构多样的 O 抗原(OAg)重复单元(RU)的酶促组装的遗传基础知之甚少,这代表了我们对细菌多糖合成中基因功能的理解的主要限制。我们提出了一种简单的遗传方法,可以自信地分配 GT 功能以及它们在 OAg RU 组装过程中的作用顺序。我们采用这种方法来确定参与 OAg 组装的 GT 功能顺序。这种方法可以一般应用于研究其他细菌多糖编码的 GT 功能,以推进我们对多糖生物合成中不同基因功能的理解,这是推进合成多糖生产的关键知识。