Suppr超能文献

福氏志贺菌 O 抗原和肠杆菌共同抗原生物合成途径的相互依赖性。

Interdependence of Shigella flexneri O Antigen and Enterobacterial Common Antigen Biosynthetic Pathways.

机构信息

Department of Molecular and Biomedical Sciences, Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaidegrid.1010.0, Adelaide, South Australia, Australia.

Institute of Health and Biomedical Innovation, Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.

出版信息

J Bacteriol. 2022 Apr 19;204(4):e0054621. doi: 10.1128/jb.00546-21. Epub 2022 Mar 16.

Abstract

Outer membrane (OM) polysaccharides allow bacteria to resist harsh environmental conditions and antimicrobial agents, traffic to and persist in pathogenic niches, and evade immune responses. Shigella flexneri has two OM polysaccharide populations, being enterobacterial common antigen (ECA) and lipopolysaccharide (LPS) O antigen (Oag); both are polymerized into chains by separate homologs of the Wzy-dependent pathway. The two polysaccharide pathways, along with peptidoglycan (PG) biosynthesis, compete for the universal biosynthetic membrane anchor, undecaprenyl phosphate (Und-P), as the finite pool of available Und-P is critical in all three cell wall biosynthetic pathways. Interactions between the two OM polysaccharide pathways have been proposed in the past where, through the use of mutants in both pathways, various perturbations have been observed. Here, we show for the first time that mutations in one of the two OM polysaccharide pathways can affect each other, dependent on where the mutation lies along the pathway, while the second pathway remains genetically intact. We then expand on this and show that the mutations also affect PG biosynthesis pathways and provide data which supports that the classical mutant phenotypes of cell wall mutants are due to a lack of available Und-P. Our work here provides another layer in understanding the complex intricacies of the cell wall biosynthetic pathways and demonstrates their interdependence on Und-P, the universal biosynthetic membrane anchor. Bacterial outer membrane polysaccharides play key roles in a range of bacterial activities from homeostasis to virulence. Two such OM polysaccharide populations are ECA and LPS Oag, which are synthesized by separate homologs of the Wzy-dependent pathway. Both ECA and LPS Oag biosynthesis join with PG biosynthesis to form the cell wall biosynthetic pathways, which all are interdependent on the availability of Und-P for proper function. Our data show the direct effects of cell wall pathway mutations affecting all related pathways when they themselves remain genetically unchanged. This work furthers our understanding of the complexities and interdependence of the three cell wall pathways.

摘要

细菌外膜(OM)多糖使细菌能够抵抗恶劣的环境条件和抗菌剂,在致病部位运输和持续存在,并逃避免疫反应。福氏志贺菌有两种 OM 多糖群,即肠细菌共同抗原(ECA)和脂多糖(LPS)O 抗原(Oag);两者均由 Wzy 依赖途径的不同同源物聚合成长链。这两种多糖途径与肽聚糖(PG)生物合成竞争通用生物合成膜锚,即十一异戊烯磷酸(Und-P),因为有限的可用 Und-P 池对所有三种细胞壁生物合成途径都至关重要。过去曾提出过两种 OM 多糖途径之间存在相互作用,通过使用两种途径中的突变体,观察到了各种干扰。在这里,我们首次表明,一种 OM 多糖途径中的突变可以相互影响,这取决于突变沿途径的位置,而第二种途径在遗传上保持完整。然后,我们对此进行了扩展,并表明突变也会影响 PG 生物合成途径,并提供数据支持细胞壁突变体的经典突变表型是由于缺乏可用的 Und-P。我们在这里的工作提供了理解细胞壁生物合成途径复杂结构的另一个层面,并表明它们依赖于通用生物合成膜锚 Und-P。 细菌外膜多糖在从体内平衡到毒力的一系列细菌活动中发挥着关键作用。两种这样的 OM 多糖群体是 ECA 和 LPS Oag,它们是由 Wzy 依赖途径的不同同源物合成的。ECA 和 LPS Oag 生物合成与 PG 生物合成一起形成细胞壁生物合成途径,所有这些途径都相互依赖于适当功能的 Und-P 的可用性。我们的数据表明,当自身在遗传上保持不变时,细胞壁途径突变直接影响所有相关途径。这项工作进一步加深了我们对三种细胞壁途径的复杂性和相互依赖性的理解。

相似文献

1
Interdependence of Shigella flexneri O Antigen and Enterobacterial Common Antigen Biosynthetic Pathways.
J Bacteriol. 2022 Apr 19;204(4):e0054621. doi: 10.1128/jb.00546-21. Epub 2022 Mar 16.
2
Identification of the Shigella flexneri Wzy Domain Modulating Wzz Interaction and Detection of the Wzy/Wzz/Oag Complex.
J Bacteriol. 2022 Sep 20;204(9):e0022422. doi: 10.1128/jb.00224-22. Epub 2022 Aug 18.
3
Topology of the Enterobacterial Common Antigen polymerase WzyE.
Microbiology (Reading). 2022 Apr;168(4). doi: 10.1099/mic.0.001183.
6
Identification of a Region in Shigella flexneri WzyB Disrupting the Interaction with Wzz.
J Bacteriol. 2021 Oct 25;203(22):e0041321. doi: 10.1128/JB.00413-21. Epub 2021 Sep 7.
9
Phosphatidylglycerol Is the Lipid Donor for Synthesis of Phospholipid-Linked Enterobacterial Common Antigen.
J Bacteriol. 2023 Jan 26;205(1):e0040322. doi: 10.1128/jb.00403-22. Epub 2023 Jan 9.

引用本文的文献

2
Recent advances in understanding of enterobacterial common antigen synthesis and regulation.
Open Biol. 2025 Jan;15(7):250055. doi: 10.1098/rsob.250055. Epub 2025 Jul 2.
3
Genetic engineering of E. coli K-12 for heterologous carbohydrate antigen production.
Microb Cell Fact. 2025 May 28;24(1):126. doi: 10.1186/s12934-025-02749-2.
4
Sequestration of dead-end undecaprenyl phosphate-linked oligosaccharide intermediate.
Microbiology (Reading). 2025 Jan;171(1). doi: 10.1099/mic.0.001530.
5
7
Diversity of sugar-diphospholipid-utilizing glycosyltransferase families.
Commun Biol. 2024 Mar 7;7(1):285. doi: 10.1038/s42003-024-05930-2.
9
O antigen biogenesis sensitises Escherichia coli K-12 to bile salts, providing a plausible explanation for its evolutionary loss.
PLoS Genet. 2023 Oct 4;19(10):e1010996. doi: 10.1371/journal.pgen.1010996. eCollection 2023 Oct.

本文引用的文献

1
Making the Enterobacterial Common Antigen Glycan and Measuring Its Substrate Sequestration.
ACS Chem Biol. 2021 Apr 16;16(4):691-700. doi: 10.1021/acschembio.0c00983. Epub 2021 Mar 19.
2
The Rcs System in : Envelope Stress Responses and Virulence Regulation.
Front Microbiol. 2021 Feb 15;12:627104. doi: 10.3389/fmicb.2021.627104. eCollection 2021.
4
Enterobacterial Common Antigen: Synthesis and Function of an Enigmatic Molecule.
mBio. 2020 Aug 11;11(4):e01914-20. doi: 10.1128/mBio.01914-20.
5
Assembly of Bacterial Capsular Polysaccharides and Exopolysaccharides.
Annu Rev Microbiol. 2020 Sep 8;74:521-543. doi: 10.1146/annurev-micro-011420-075607. Epub 2020 Jul 17.
6
Regulation of peptidoglycan synthesis and remodelling.
Nat Rev Microbiol. 2020 Aug;18(8):446-460. doi: 10.1038/s41579-020-0366-3. Epub 2020 May 18.
7
A Slippery Scaffold: Synthesis and Recycling of the Bacterial Cell Wall Carrier Lipid.
J Mol Biol. 2020 Aug 21;432(18):4964-4982. doi: 10.1016/j.jmb.2020.03.025. Epub 2020 Mar 29.
8
Cytosolic Gram-negative bacteria prevent apoptosis by inhibition of effector caspases through lipopolysaccharide.
Nat Microbiol. 2020 Feb;5(2):354-367. doi: 10.1038/s41564-019-0620-5. Epub 2019 Dec 23.
9
Updates to the Symbol Nomenclature for Glycans guidelines.
Glycobiology. 2019 Aug 20;29(9):620-624. doi: 10.1093/glycob/cwz045.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验