Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.
Max Planck Queensland Centre, Queensland University of Technology, Brisbane, Queensland, Australia.
PLoS Genet. 2023 Oct 4;19(10):e1010996. doi: 10.1371/journal.pgen.1010996. eCollection 2023 Oct.
Escherichia coli K-12 is a model organism for bacteriology and has served as a workhorse for molecular biology and biochemistry for over a century since its first isolation in 1922. However, Escherichia coli K-12 strains are phenotypically devoid of an O antigen (OAg) since early reports in the scientific literature. Recent studies have reported the presence of independent mutations that abolish OAg repeating-unit (RU) biogenesis in E. coli K-12 strains from the same original source, suggesting unknown evolutionary forces have selected for inactivation of OAg biogenesis during the early propagation of K-12. Here, we show for the first time that restoration of OAg in E. coli K-12 strain MG1655 synergistically sensitises bacteria to vancomycin with bile salts (VBS). Suppressor mutants surviving lethal doses of VBS primarily contained disruptions in OAg biogenesis. We present data supporting a model where the transient presence and accumulation of lipid-linked OAg intermediates in the periplasmic leaflet of the inner membrane interfere with peptidoglycan sacculus biosynthesis, causing growth defects that are synergistically enhanced by bile salts. Lastly, we demonstrate that continuous bile salt exposure of OAg-producing MG1655 in the laboratory, can recreate a scenario where OAg disruption is selected for as an evolutionary fitness benefit. Our work thus provides a plausible explanation for the long-held mystery of the selective pressure that may have led to the loss of OAg biogenesis in E. coli K-12; this opens new avenues for exploring long-standing questions on the intricate network coordinating the synthesis of different cell envelope components in Gram-negative bacteria.
大肠杆菌 K-12 是细菌学的模式生物,自 1922 年首次分离以来,它已经作为分子生物学和生物化学的主力工作了一个多世纪。然而,大肠杆菌 K-12 菌株在表型上缺乏 O 抗原(OAg),因为早期的科学文献中有报道。最近的研究报告称,从同一原始来源分离的大肠杆菌 K-12 菌株中存在独立的突变,这些突变会破坏 OAg 重复单元(RU)的生物发生,这表明在 K-12 的早期繁殖过程中,未知的进化力量选择了 OAg 生物发生的失活。在这里,我们首次表明,在大肠杆菌 K-12 菌株 MG1655 中恢复 OAg 协同作用,使细菌对万古霉素和胆汁盐(VBS)敏感。在致死剂量的 VBS 中存活下来的抑制突变体主要含有 OAg 生物发生的破坏。我们提供的数据支持这样一种模型,即在质膜的周质叶层中短暂存在和积累脂质连接的 OAg 中间体,干扰肽聚糖囊泡的生物合成,导致生长缺陷,胆汁盐协同增强这些缺陷。最后,我们证明,在实验室中持续暴露于胆汁盐的 OAg 产生的 MG1655 可以重现 OAg 破坏被选择作为进化适应性优势的情况。我们的工作因此为可能导致大肠杆菌 K-12 中 OAg 生物发生丧失的选择压力提供了一个合理的解释;这为探索革兰氏阴性细菌中不同细胞包膜成分合成的复杂网络协调的长期存在的问题开辟了新的途径。