Suppr超能文献

将宏分类数据集整合到微生物关联网络中,突出了发酵蔬菜中细菌群落动态的共有特征。

Integration of metataxonomic data sets into microbial association networks highlights shared bacterial community dynamics in fermented vegetables.

机构信息

MaIAGE, INRAE, Université Paris-Saclay, Jouy-en-Josas, France.

STLO, Agrocampus Ouest, INRAE, Rennes, France.

出版信息

Microbiol Spectr. 2024 Jun 4;12(6):e0031224. doi: 10.1128/spectrum.00312-24. Epub 2024 May 15.

Abstract

UNLABELLED

The management of food fermentation is still largely based on empirical knowledge, as the dynamics of microbial communities and the underlying metabolic networks that produce safe and nutritious products remain beyond our understanding. Although these closed ecosystems contain relatively few taxa, they have not yet been thoroughly characterized with respect to how their microbial communities interact and dynamically evolve. However, with the increased availability of metataxonomic data sets on different fermented vegetables, it is now possible to gain a comprehensive understanding of the microbial relationships that structure plant fermentation. In this study, we applied a network-based approach to the integration of public metataxonomic 16S data sets targeting different fermented vegetables throughout time. Specifically, we aimed to explore, compare, and combine public 16S data sets to identify shared associations between amplicon sequence variants (ASVs) obtained from independent studies. The workflow includes steps for searching and selecting public time-series data sets and constructing association networks of ASVs based on co-abundance metrics. Networks for individual data sets are then integrated into a core network, highlighting significant associations. Microbial communities are identified based on the comparison and clustering of ASV networks using the "stochastic block model" method. When we applied this method to 10 public data sets (including a total of 931 samples) targeting five varieties of vegetables with different sampling times, we found that it was able to shed light on the dynamics of vegetable fermentation by characterizing the processes of community succession among different bacterial assemblages.

IMPORTANCE

Within the growing body of research on the bacterial communities involved in the fermentation of vegetables, there is particular interest in discovering the species or consortia that drive different fermentation steps. This integrative analysis demonstrates that the reuse and integration of public microbiome data sets can provide new insights into a little-known biotope. Our most important finding is the recurrent but transient appearance, at the beginning of vegetable fermentation, of amplicon sequence variants (ASVs) belonging to and their associations with ASVs belonging to . These findings could be applied to the design of new fermented products.

摘要

未加标签

食品发酵的管理仍然在很大程度上基于经验知识,因为微生物群落的动态及其产生安全和营养产品的潜在代谢网络仍超出我们的理解。尽管这些封闭的生态系统中包含的分类群相对较少,但它们尚未根据其微生物群落的相互作用和动态演变进行全面描述。然而,随着针对不同发酵蔬菜的分类组学数据集的可用性增加,现在有可能全面了解构成植物发酵的微生物关系。在这项研究中,我们应用基于网络的方法整合了针对不同发酵蔬菜的公共分类组学 16S 数据集。具体而言,我们旨在探索、比较和组合公共 16S 数据集,以识别从独立研究中获得的扩增子序列变异 (ASV) 之间的共享关联。工作流程包括搜索和选择公共时间序列数据集以及基于共丰度指标构建 ASV 关联网络的步骤。然后,将各个数据集的网络整合到一个核心网络中,突出显示重要的关联。基于“随机块模型”方法,通过比较和聚类 ASV 网络来识别微生物群落。当我们将这种方法应用于 10 个公共数据集(总共包括 931 个样本)时,这些数据集针对五种不同采样时间的蔬菜品种,我们发现它能够通过描述不同细菌组合体群落演替过程来阐明蔬菜发酵的动态。

重要性

在涉及蔬菜发酵的细菌群落的不断增加的研究中,人们特别关注发现推动不同发酵步骤的物种或联合体。这种综合分析表明,公共微生物组数据集的再利用和整合可以为鲜为人知的生物群落提供新的见解。我们最重要的发现是,在蔬菜发酵开始时,属于 和与属于 的 ASV 之间的关联,ASV 反复但短暂出现。这些发现可应用于新型发酵产品的设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3e9/11237590/260ea29d6422/spectrum.00312-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验