School of Biological Sciences, University of Bristol , Bristol, UK.
Biol Lett. 2024 May;20(5):20230576. doi: 10.1098/rsbl.2023.0576. Epub 2024 May 15.
Neural circuits govern the interface between the external environment, internal cues and outwardly directed behaviours. To process multiple environmental stimuli and integrate these with internal state requires considerable neural computation. Expansion in neural network size, most readily represented by whole brain size, has historically been linked to behavioural complexity, or the predominance of cognitive behaviours. Yet, it is largely unclear which aspects of circuit variation impact variation in performance. A key question in the field of evolutionary neurobiology is therefore how neural circuits evolve to allow improved behavioural performance or innovation. We discuss this question by first exploring how volumetric changes in brain areas reflect actual neural circuit change. We explore three major axes of neural circuit evolution-replication, restructuring and reconditioning of cells and circuits-and discuss how these could relate to broader phenotypes and behavioural variation. This discussion touches on the relevant uses and limitations of volumetrics, while advocating a more circuit-based view of cognition. We then use this framework to showcase an example from the insect brain, the multi-sensory integration and internal processing that is shared between the mushroom bodies and central complex. We end by identifying future trends in this research area, which promise to advance the field of evolutionary neurobiology.
神经回路控制着外部环境、内部线索和外向行为之间的接口。为了处理多个环境刺激并将这些刺激与内部状态整合起来,需要大量的神经计算。神经网络大小的扩张,最容易用整个大脑的大小来表示,历史上与行为复杂性或认知行为的主导地位有关。然而,目前还不清楚哪些回路变化的方面会影响性能的变化。进化神经生物学领域的一个关键问题是,神经回路如何进化以提高行为表现或创新。我们通过首先探讨大脑区域的体积变化如何反映实际的神经回路变化来讨论这个问题。我们探讨了神经回路进化的三个主要轴——细胞和回路的复制、重构和再调节,并讨论了这些轴如何与更广泛的表型和行为变化相关。这个讨论涉及到体积学的相关用途和局限性,同时提倡更基于回路的认知观点。然后,我们使用这个框架展示了昆虫大脑中的一个例子,即蘑菇体和中央复合体之间共享的多感觉整合和内部处理。最后,我们确定了这个研究领域的未来趋势,这些趋势有望推动进化神经生物学领域的发展。