Efremidis Nikolaos K, Christodoulides Demetrios N
Opt Lett. 2024 May 15;49(10):2777-2780. doi: 10.1364/OL.511787.
Statistical mechanics can provide a versatile theoretical framework for investigating the collective dynamics of weakly nonlinear-wave settings that can be utterly complex to describe otherwise. In optics, composite systems arise due to interactions between different frequencies and polarizations. The purpose of this work is to develop a thermodynamic theory that takes into account the synergistic action of multiple components. We find that the type of the nonlinearity involved can have important implications in the thermalization process and, hence, can lead to different thermal equilibrium conditions. Importantly, we derive closed-form expressions for the actual optomechanical pressure that is exerted on the system. In particular, the total optomechanical pressure is the sum of the partial pressures due to each component. Our results can be applied to a variety of weakly nonlinear optical settings such as multimode fibers, bulk waveguides, photonic lattices, and coupled microresonators. We present two specific examples, where two colors interact in a one-waveguide array with either a cubic or quadratic nonlinearity.
统计力学可以为研究弱非线性波环境下的集体动力学提供一个通用的理论框架,否则这些环境可能极其复杂而难以描述。在光学中,复合系统是由于不同频率和偏振之间的相互作用而产生的。这项工作的目的是发展一种考虑多个组件协同作用的热力学理论。我们发现,所涉及的非线性类型在热化过程中可能具有重要影响,因此可能导致不同的热平衡条件。重要的是,我们推导出了作用在系统上的实际光机械压力的封闭形式表达式。特别是,总光机械压力是各组件产生的分压力之和。我们的结果可以应用于各种弱非线性光学环境,如多模光纤、体光波导、光子晶格和耦合微谐振器。我们给出两个具体例子,其中两种颜色在具有立方或二次非线性的单波导阵列中相互作用。