Biomedical Engineering Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3.
Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada M5B 1T8.
ACS Biomater Sci Eng. 2024 Jun 10;10(6):3896-3908. doi: 10.1021/acsbiomaterials.4c00110. Epub 2024 May 15.
Microfluidic spinning is emerging as a useful technique in the fabrication of alginate fibers, enabling applications in drug screening, disease modeling, and disease diagnostics. In this paper, by capitalizing on the benefits of aqueous two-phase systems (ATPS) to produce diverse alginate fiber forms, we introduce an ATPS-Spinning platform (ATPSpin). This ATPS-enabled method efficiently circumvents the rapid clogging challenges inherent to traditional fiber production techniques by regulating the interaction between alginate and cross-linking agents like Ba ions. By varying system parameters under the guidance of a regime map, our system produces several fiber forms─solid, hollow, and droplet-filled─consistently and reproducibly from a single device. We demonstrate that the resulting alginate fibers possess distinct features, including biocompatibility. We also encapsulate HEK293 cells in the microfibers as a proof-of-concept that this versatile microfluidic fiber generation platform may have utility in tissue engineering and regenerative medicine applications.
微流控纺丝技术在海藻酸盐纤维的制备中崭露头角,可应用于药物筛选、疾病建模和疾病诊断等领域。在本文中,我们利用双水相系统(ATPS)的优势来制备多种海藻酸盐纤维形式,引入了一种 ATPS-纺丝平台(ATPSpin)。这种基于 ATPS 的方法通过调节海藻酸盐与钡离子等交联剂之间的相互作用,有效地避免了传统纤维制备技术中固有的快速堵塞问题。通过在相图的指导下改变系统参数,我们的系统能够从单个装置中稳定且可重复地制备出几种纤维形式,包括实心、空心和液滴填充纤维。我们证明了所得到的海藻酸盐纤维具有独特的特性,包括生物相容性。我们还将 HEK293 细胞包封在微纤维中,作为一个概念验证,证明这种多功能微流控纤维生成平台可能在组织工程和再生医学应用中有实用价值。