MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods and Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.
China Astronaut Research and Training Center, Beijing, China.
Nat Protoc. 2021 Feb;16(2):937-964. doi: 10.1038/s41596-020-00442-9. Epub 2020 Dec 14.
Microtissues with specific structures and integrated vessels play a key role in maintaining organ functions. To recapitulate the in vivo environment for tissue engineering and organ-on-a-chip purposes, it is essential to develop perfusable biomimetic microscaffolds. We developed facile all-aqueous microfluidic approaches for producing perfusable hydrogel microtubes with diverse biomimetic sizes and shapes. Here, we provide a detailed protocol describing the construction of the microtube spinning platforms, the assembly of microfluidic devices, and the fabrication and characterization of various perfusable hydrogel microtubes. The hydrogel microtubes can be continuously generated from microfluidic devices due to the crosslinking of alginate by calcium in the coaxial flows and collecting bath. Owing to the mild all-aqueous spinning process, cells can be loaded into the alginate prepolymer for microtube spinning, which enables the direct production of cell-laden hydrogel microtubes. By manipulating the fluid dynamics at the microscale, the composable microfluidic devices and platforms can be used for the facile generation of six types of biomimetic perfusable microtubes. The microfluidic platforms and devices can be set up within 3 h from commonly available and inexpensive materials. After 10-20 min required to adjust the platform and fluids, perfusable hydrogel microtubes can be generated continuously. We describe how to characterize the microtubes using scanning electron or confocal microscopy. As an example application, we describe how the microtubes can be used for the preparation of a vascular lumen and how to perform barrier permeability tests of the vascular lumen.
具有特定结构和整合血管的微组织在维持器官功能方面发挥着关键作用。为了再现组织工程和器官芯片的体内环境,开发可灌注的仿生微支架至关重要。我们开发了简便的全水相微流控方法,用于生产具有不同仿生尺寸和形状的可灌注水凝胶微管。在这里,我们提供了一个详细的方案,描述了微管纺丝平台的构建、微流控器件的组装以及各种可灌注水凝胶微管的制造和特性。由于海藻酸盐在同轴流和收集浴中的交联,水凝胶微管可以从微流控器件中连续产生。由于温和的全水纺丝工艺,细胞可以加载到海藻酸盐预聚物中进行微管纺丝,从而可以直接生产细胞负载的水凝胶微管。通过在微尺度上操纵流体动力学,可以使用可组合的微流控器件和平台来轻松生成六种仿生可灌注微管。微流控平台和器件可以在 3 小时内从常用且廉价的材料中搭建完成。在调整平台和流体所需的 10-20 分钟后,可连续生成可灌注的水凝胶微管。我们描述了如何使用扫描电子显微镜或共聚焦显微镜对微管进行特性分析。作为一个示例应用,我们描述了如何使用微管来制备血管腔以及如何对血管腔的屏障通透性进行测试。