Suppr超能文献

立体人工复眼用于三维空间中的时空感知。

Stereoscopic artificial compound eyes for spatiotemporal perception in three-dimensional space.

机构信息

Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.

Department of Material Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA.

出版信息

Sci Robot. 2024 May 15;9(90):eadl3606. doi: 10.1126/scirobotics.adl3606.

Abstract

Arthropods' eyes are effective biological vision systems for object tracking and wide field of view because of their structural uniqueness; however, unlike mammalian eyes, they can hardly acquire the depth information of a static object because of their monocular cues. Therefore, most arthropods rely on motion parallax to track the object in three-dimensional (3D) space. Uniquely, the praying mantis (Mantodea) uses both compound structured eyes and a form of stereopsis and is capable of achieving object recognition in 3D space. Here, by mimicking the vision system of the praying mantis using stereoscopically coupled artificial compound eyes, we demonstrated spatiotemporal object sensing and tracking in 3D space with a wide field of view. Furthermore, to achieve a fast response with minimal latency, data storage/transportation, and power consumption, we processed the visual information at the edge of the system using a synaptic device and a federated split learning algorithm. The designed and fabricated stereoscopic artificial compound eye provides energy-efficient and accurate spatiotemporal object sensing and optical flow tracking. It exhibits a root mean square error of 0.3 centimeter, consuming only approximately 4 millijoules for sensing and tracking. These results are more than 400 times lower than conventional complementary metal-oxide semiconductor-based imaging systems. Our biomimetic imager shows the potential of integrating nature's unique design using hardware and software codesigned technology toward capabilities of edge computing and sensing.

摘要

节肢动物的眼睛因其结构独特,成为高效的生物视觉系统,能够追踪物体并实现宽视场;然而,与哺乳动物的眼睛不同,节肢动物由于只有单眼线索,很难获取静态物体的深度信息。因此,大多数节肢动物依赖运动视差来在三维(3D)空间中跟踪物体。独特的是,螳螂(螳螂目)既使用复眼结构,又使用一种形式的立体视觉,能够在 3D 空间中实现物体识别。在这里,我们通过模拟螳螂的视觉系统使用立体耦合的人工复眼,展示了具有宽视场的 3D 空间中的时空物体感应和跟踪。此外,为了实现快速响应、最小延迟、数据存储/传输和低功耗,我们使用突触设备和联邦分割学习算法在系统边缘处理视觉信息。设计和制造的立体人工复眼提供了节能且精确的时空物体感应和光流跟踪。它的均方根误差为 0.3 厘米,用于感应和跟踪的功耗仅约为 4 毫焦耳。这些结果比传统的基于互补金属氧化物半导体的成像系统低 400 多倍。我们的仿生成像仪展示了使用硬件和软件协同设计技术整合自然独特设计的潜力,实现边缘计算和感应能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验