Suppr超能文献

A new compact symmetric shear diamond anvil cell for in situ high-pressure-torsion studies.

作者信息

Pandey K K, Poswal H K

机构信息

High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India and Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.

出版信息

Rev Sci Instrum. 2024 May 1;95(5). doi: 10.1063/5.0193048.

Abstract

In situ studies under severe plastic deformation at high pressures, employing shear diamond anvil cells, have recently gained much interest in the high-pressure community owing to their potential applications in material processing methods, mechanochemistry, and geophysics. These studies, combined with multi-scale computational simulations, provide important insights into the transient hierarchical microstructural evolution, structural phase transitions, and orientation relationship between parent and daughter phases and help establish the kinetics of strain-induced phase transitions under severe plastic deformation. The existing SDACs are mostly used in axial x-ray diffraction geometry due to geometrical constraints providing less reliable information about stress states and texture. Their asymmetric design also poses serious limitations to high-pressure shear studies on single crystals. To overcome these limitations, a new compact symmetric shear diamond anvil cell has been designed and developed for in situ high-pressure torsion studies on materials. The symmetric angular opening and short working distance in this new design help obtain a more reliable crystallographic orientation distribution function and lattice strain states up to a large Q range. Here, we present the advantages of the symmetric design with a few demonstrative studies.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验